IDEAS home Printed from https://ideas.repec.org/r/fip/fedgif/780.html
   My bibliography  Save this item

Forecasting U.S. inflation by Bayesian Model Averaging

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Eric Hillebrand & Huiyu Huang & Tae-Hwy Lee & Canlin Li, 2018. "Using the Entire Yield Curve in Forecasting Output and Inflation," Econometrics, MDPI, vol. 6(3), pages 1-27, August.
  2. Exterkate, Peter & Groenen, Patrick J.F. & Heij, Christiaan & van Dijk, Dick, 2016. "Nonlinear forecasting with many predictors using kernel ridge regression," International Journal of Forecasting, Elsevier, vol. 32(3), pages 736-753.
  3. Miranda-Agrippino, Silvia & Ricco, Giovanni, 2018. "Bayesian Vector Autoregressions," The Warwick Economics Research Paper Series (TWERPS) 1159, University of Warwick, Department of Economics.
  4. Jan J. J. Groen & Richard Paap & Francesco Ravazzolo, 2013. "Real-Time Inflation Forecasting in a Changing World," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 31(1), pages 29-44, January.
  5. Eugster, Patrick & Uhl, Matthias W., 2024. "Forecasting inflation using sentiment," Economics Letters, Elsevier, vol. 236(C).
  6. Chang, Andrew C. & Hanson, Tyler J., 2016. "The accuracy of forecasts prepared for the Federal Open Market Committee," Journal of Economics and Business, Elsevier, vol. 83(C), pages 23-43.
  7. Drautzburg, Thorsten, 2024. "A structural approach to combining external and DSGE model forecasts," Economics Letters, Elsevier, vol. 235(C).
  8. Yang Zhao & Charalampos Stasinakis & Georgios Sermpinis & Filipa Da Silva Fernandes, 2019. "Revisiting Fama–French factors' predictability with Bayesian modelling and copula‐based portfolio optimization," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 24(4), pages 1443-1463, October.
  9. Chin, Kuo-Hsuan & Li, Xue, 2019. "Bayesian forecast combination in VAR-DSGE models," Journal of Macroeconomics, Elsevier, vol. 59(C), pages 278-298.
  10. Lenza, Michele & Moutachaker, Inès & Paredes, Joan, 2023. "Density forecasts of inflation: a quantile regression forest approach," CEPR Discussion Papers 18298, C.E.P.R. Discussion Papers.
  11. Nima Nonejad, 2021. "An Overview Of Dynamic Model Averaging Techniques In Time‐Series Econometrics," Journal of Economic Surveys, Wiley Blackwell, vol. 35(2), pages 566-614, April.
  12. Marine Carrasco & Barbara Rossi, 2016. "In-Sample Inference and Forecasting in Misspecified Factor Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(3), pages 313-338, July.
  13. Ouysse, Rachida, 2016. "Bayesian model averaging and principal component regression forecasts in a data rich environment," International Journal of Forecasting, Elsevier, vol. 32(3), pages 763-787.
  14. Raffaella Giacomini & Barbara Rossi, 2013. "Forecasting in macroeconomics," Chapters, in: Nigar Hashimzade & Michael A. Thornton (ed.), Handbook of Research Methods and Applications in Empirical Macroeconomics, chapter 17, pages 381-408, Edward Elgar Publishing.
  15. Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2015. "Bayesian VARs: Specification Choices and Forecast Accuracy," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 30(1), pages 46-73, January.
  16. Jan-Erik Antipin & Farid Jimmy Boumediene & Pär Österholm, 2014. "Forecasting Inflation Using Constant Gain Least Squares," Australian Economic Papers, Wiley Blackwell, vol. 53(1-2), pages 2-15, June.
  17. Faust, Jon & Wright, Jonathan H., 2013. "Forecasting Inflation," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 2-56, Elsevier.
  18. Kim, Hyun Hak & Swanson, Norman R., 2014. "Forecasting financial and macroeconomic variables using data reduction methods: New empirical evidence," Journal of Econometrics, Elsevier, vol. 178(P2), pages 352-367.
  19. Montgomery, Jacob M. & Hollenbach, Florian M. & Ward, Michael D., 2015. "Calibrating ensemble forecasting models with sparse data in the social sciences," International Journal of Forecasting, Elsevier, vol. 31(3), pages 930-942.
  20. Kapetanios, George & Labhard, Vincent & Price, Simon, 2008. "Forecast combination and the Bank of England's suite of statistical forecasting models," Economic Modelling, Elsevier, vol. 25(4), pages 772-792, July.
  21. Faust, Jon & Wright, Jonathan H., 2009. "Comparing Greenbook and Reduced Form Forecasts Using a Large Realtime Dataset," Journal of Business & Economic Statistics, American Statistical Association, vol. 27(4), pages 468-479.
  22. Kapetanios, George & Labhard, Vincent & Price, Simon, 2008. "Forecasting Using Bayesian and Information-Theoretic Model Averaging: An Application to U.K. Inflation," Journal of Business & Economic Statistics, American Statistical Association, vol. 26, pages 33-41, January.
  23. Domenico Giannone & Michele Lenza & Giorgio E. Primiceri, 2021. "Economic Predictions With Big Data: The Illusion of Sparsity," Econometrica, Econometric Society, vol. 89(5), pages 2409-2437, September.
  24. Groen, Jan J.J. & Kapetanios, George, 2016. "Revisiting useful approaches to data-rich macroeconomic forecasting," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 221-239.
  25. Alexander Vosseler & Enzo Weber, 2018. "Forecasting seasonal time series data: a Bayesian model averaging approach," Computational Statistics, Springer, vol. 33(4), pages 1733-1765, December.
  26. Graefe, Andreas & Küchenhoff, Helmut & Stierle, Veronika & Riedl, Bernhard, 2015. "Limitations of Ensemble Bayesian Model Averaging for forecasting social science problems," International Journal of Forecasting, Elsevier, vol. 31(3), pages 943-951.
  27. Hassani, Hossein & Silva, Emmanuel Sirimal, 2018. "Forecasting UK consumer price inflation using inflation forecasts," Research in Economics, Elsevier, vol. 72(3), pages 367-378.
  28. Clark, Todd E. & McCracken, Michael W., 2005. "The power of tests of predictive ability in the presence of structural breaks," Journal of Econometrics, Elsevier, vol. 124(1), pages 1-31, January.
  29. De Mol, Christine & Giannone, Domenico & Reichlin, Lucrezia, 2008. "Forecasting using a large number of predictors: Is Bayesian shrinkage a valid alternative to principal components?," Journal of Econometrics, Elsevier, vol. 146(2), pages 318-328, October.
  30. Raffaella Giacomini & Barbara Rossi, 2015. "Forecasting in Nonstationary Environments: What Works and What Doesn't in Reduced-Form and Structural Models," Annual Review of Economics, Annual Reviews, vol. 7(1), pages 207-229, August.
  31. Rossi, Barbara, 2013. "Advances in Forecasting under Instability," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 1203-1324, Elsevier.
  32. Maheu, John M. & McCurdy, Thomas H., 2009. "How Useful are Historical Data for Forecasting the Long-Run Equity Return Distribution?," Journal of Business & Economic Statistics, American Statistical Association, vol. 27, pages 95-112.
  33. Matthias Pelster & Johannes Vilsmeier, 2018. "The determinants of CDS spreads: evidence from the model space," Review of Derivatives Research, Springer, vol. 21(1), pages 63-118, April.
  34. Khundrakpam, Jeevan Kumar & George, Asish Thomas, 2012. "An Empirical Analysis of the Relationship between WPI and PMI-Manufacturing Price Indices in India," MPRA Paper 50929, University Library of Munich, Germany.
  35. Wen-Hsien Liu & Shu-Shih Weng, 2018. "On predicting the semiconductor industry cycle: a Bayesian model averaging approach," Empirical Economics, Springer, vol. 54(2), pages 673-703, March.
  36. Chun Liu & John M. Maheu, 2009. "Forecasting realized volatility: a Bayesian model-averaging approach," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 24(5), pages 709-733.
  37. Prüser Jan & Hanck Christoph, 2021. "A Comparison of Approaches to Select the Informativeness of Priors in BVARs," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 241(4), pages 501-525, August.
  38. Hansen, Bruce E., 2008. "Least-squares forecast averaging," Journal of Econometrics, Elsevier, vol. 146(2), pages 342-350, October.
  39. Tumala, Mohammed M & Olubusoye, Olusanya E & Yaaba, Baba N & Yaya, OlaOluwa S & Akanbi, Olawale B, 2017. "Forecasting Nigerian Inflation using Model Averaging methods: Modelling Frameworks to Central Banks," MPRA Paper 88754, University Library of Munich, Germany, revised Feb 2018.
  40. Carlos Henrique Dias Cordeiro de Castro & Fernando Antonio Lucena Aiube, 2023. "Forecasting inflation time series using score‐driven dynamic models and combination methods: The case of Brazil," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(2), pages 369-401, March.
  41. Cheng, Xu & Hansen, Bruce E., 2015. "Forecasting with factor-augmented regression: A frequentist model averaging approach," Journal of Econometrics, Elsevier, vol. 186(2), pages 280-293.
  42. repec:hal:spmain:info:hdl:2441/27od5pb99881folvtfs8s3k16l is not listed on IDEAS
  43. Aparicio, Diego & Bertolotto, Manuel I., 2020. "Forecasting inflation with online prices," International Journal of Forecasting, Elsevier, vol. 36(2), pages 232-247.
  44. Rossi, Barbara & Sekhposyan, Tatevik, 2014. "Evaluating predictive densities of US output growth and inflation in a large macroeconomic data set," International Journal of Forecasting, Elsevier, vol. 30(3), pages 662-682.
  45. Doojav Gan-Ochir & Luvsannyam Davaajargal, 2023. "Forecasting Inflation in Mongolia: A Dynamic Model Averaging Approach," Journal of Time Series Econometrics, De Gruyter, vol. 15(1), pages 27-48, January.
  46. Kapetanios, George, 2007. "Variable selection in regression models using nonstandard optimisation of information criteria," Computational Statistics & Data Analysis, Elsevier, vol. 52(1), pages 4-15, September.
  47. Bleher, Johannes & Dimpfl, Thomas, 2022. "Knitting Multi-Annual High-Frequency Google Trends to Predict Inflation and Consumption," Econometrics and Statistics, Elsevier, vol. 24(C), pages 1-26.
  48. El-Shagi, Makram, 2011. "Inflation expectations: Does the market beat econometric forecasts?," The North American Journal of Economics and Finance, Elsevier, vol. 22(3), pages 298-319.
  49. Baxa, Jaromír & Plašil, Miroslav & Vašíček, Bořek, 2015. "Changes in inflation dynamics under inflation targeting? Evidence from Central European countries," Economic Modelling, Elsevier, vol. 44(C), pages 116-130.
  50. repec:spo:wpmain:info:hdl:2441/27od5pb99881folvtfs8s3k16l is not listed on IDEAS
  51. Brock, William A. & Durlauf, Steven N. & West, Kenneth D., 2007. "Model uncertainty and policy evaluation: Some theory and empirics," Journal of Econometrics, Elsevier, vol. 136(2), pages 629-664, February.
  52. Panpan Zhu & Qingjie Zhou & Yinpeng Zhang, 2024. "Investor attention and consumer price index inflation rate: Evidence from the United States," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-12, December.
  53. Andriantomanga, Zo, 2023. "The role of survey-based expectations in real-time forecasting of US inflation," MPRA Paper 119904, University Library of Munich, Germany.
  54. Drechsel, Katja & Scheufele, Rolf, 2012. "The performance of short-term forecasts of the German economy before and during the 2008/2009 recession," International Journal of Forecasting, Elsevier, vol. 28(2), pages 428-445.
  55. Berge, Travis J., 2018. "Understanding survey-based inflation expectations," International Journal of Forecasting, Elsevier, vol. 34(4), pages 788-801.
  56. Samuels, Jon D. & Sekkel, Rodrigo M., 2017. "Model Confidence Sets and forecast combination," International Journal of Forecasting, Elsevier, vol. 33(1), pages 48-60.
  57. Todd E. Clark & Edward S. Knotek & Saeed Zaman, 2015. "Measuring Inflation Forecast Uncertainty," Economic Commentary, Federal Reserve Bank of Cleveland, vol. 2015(03), pages 1-6, March.
  58. Xu Cheng & Bruce E. Hansen, 2012. "Forecasting with Factor-Augmented Regression: A Frequentist Model Averaging Approach, Second Version," PIER Working Paper Archive 13-061, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania, revised 03 Sep 2013.
  59. Krzysztof DRACHAL, 2020. "Forecasting the Inflation Rate in Poland and U.S. Using Dynamic Model Averaging (DMA) and Google Queries," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(2), pages 18-34, July.
  60. Constandina Koki & Stefanos Leonardos & Georgios Piliouras, 2020. "Do Cryptocurrency Prices Camouflage Latent Economic Effects? A Bayesian Hidden Markov Approach," Future Internet, MDPI, vol. 12(3), pages 1-19, March.
  61. Anwen Yin, 2024. "Predictive model averaging with parameter instability and heteroskedasticity," Bulletin of Economic Research, Wiley Blackwell, vol. 76(2), pages 418-442, April.
  62. Andrew C. Chang & Tyler J. Hanson, 2015. "The Accuracy of Forecasts Prepared for the Federal Open Market Committee," Finance and Economics Discussion Series 2015-62, Board of Governors of the Federal Reserve System (U.S.).
  63. Hsiao, Cheng & Wan, Shui Ki, 2011. "Comparison of forecasting methods with an application to predicting excess equity premium," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 81(7), pages 1235-1246.
  64. Hancock, Thomas O. & Hess, Stephane & Daly, Andrew & Fox, James, 2020. "Using a sequential latent class approach for model averaging: Benefits in forecasting and behavioural insights," Transportation Research Part A: Policy and Practice, Elsevier, vol. 139(C), pages 429-454.
  65. David Alan Peel & Pantelis Promponas, 2016. "Forecasting the nominal exchange rate movements in a changing world. The case of the U.S. and the U.K," Working Papers 144439514, Lancaster University Management School, Economics Department.
  66. Petrevski, Goran & Exterkate, Peter & Tevdovski, Dragan & Bogoev, Jane, 2015. "The transmission of foreign shocks to South Eastern European economies: A Bayesian VAR approach," Economic Systems, Elsevier, vol. 39(4), pages 632-643.
  67. Luca Brugnolini & Giuseppe Ragusa, 2022. "Euro Area Deflationary Pressure Index," Computational Economics, Springer;Society for Computational Economics, vol. 60(3), pages 883-900, October.
  68. Solikin M. Juhro & Bernard Njindan Iyke, 2019. "Forecasting Indonesian Inflation Within An Inflation-Targeting Framework: Do Large-Scale Models Pay Off?," Bulletin of Monetary Economics and Banking, Bank Indonesia, vol. 22(4), pages 423-436, December.
  69. Pelster, Matthias & Vilsmeier, Johannes, 2016. "The determinants of CDS spreads: Evidence from the model space," Discussion Papers 43/2016, Deutsche Bundesbank.
  70. Pedro Henrique Melo Albuquerque & Yaohao Peng & João Pedro Fontoura da Silva, 2022. "Making the whole greater than the sum of its parts: A literature review of ensemble methods for financial time series forecasting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(8), pages 1701-1724, December.
  71. Ebersberger, Bernd & Galia, Fabrice & Laursen, Keld & Salter, Ammon, 2021. "Inbound Open Innovation and Innovation Performance: A Robustness Study," Research Policy, Elsevier, vol. 50(7).
  72. Garett Jones & W. Schneider, 2006. "Intelligence, Human Capital, and Economic Growth: A Bayesian Averaging of Classical Estimates (BACE) Approach," Journal of Economic Growth, Springer, vol. 11(1), pages 71-93, March.
  73. Constandina Koki & Stefanos Leonardos & Georgios Piliouras, 2019. "A Peek into the Unobservable: Hidden States and Bayesian Inference for the Bitcoin and Ether Price Series," Papers 1909.10957, arXiv.org, revised Jul 2021.
  74. Stefania D'Amico, 2005. "Density selection and combination under model ambiguity: an application to stock returns," Finance and Economics Discussion Series 2005-09, Board of Governors of the Federal Reserve System (U.S.).
  75. Jef Boeckx, 2011. "Estimating monetary policy reaction functions : A discrete choice approach," Working Paper Research 210, National Bank of Belgium.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.