IDEAS home Printed from https://ideas.repec.org/r/fip/fedawp/2003-28.html
   My bibliography  Save this item

Choosing the best volatility models: the model confidence set approach

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Sébastien Laurent & Jeroen V. K. Rombouts & Francesco Violante, 2012. "On the forecasting accuracy of multivariate GARCH models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 27(6), pages 934-955, September.
  2. Massimiliano Caporin & Michael McAleer, 2011. "Ranking Multivariate GARCH Models by Problem Dimension: An Empirical Evaluation," Documentos de Trabajo del ICAE 2011-20, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico.
  3. Nielsen, Morten Ørregaard & Frederiksen, Per, 2008. "Finite sample accuracy and choice of sampling frequency in integrated volatility estimation," Journal of Empirical Finance, Elsevier, vol. 15(2), pages 265-286, March.
  4. Mauro Bernardi & Leopoldo Catania, 2014. "The Model Confidence Set package for R," Papers 1410.8504, arXiv.org.
  5. Becker, Ralf & Clements, Adam E., 2008. "Are combination forecasts of S&P 500 volatility statistically superior?," International Journal of Forecasting, Elsevier, vol. 24(1), pages 122-133.
  6. Clements, Adam & Preve, Daniel P.A., 2021. "A Practical Guide to harnessing the HAR volatility model," Journal of Banking & Finance, Elsevier, vol. 133(C).
  7. Herrera, R. & Clements, A.E., 2018. "Point process models for extreme returns: Harnessing implied volatility," Journal of Banking & Finance, Elsevier, vol. 88(C), pages 161-175.
  8. Hansen, Peter Reinhard & Lunde, Asger, 2006. "Consistent ranking of volatility models," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 97-121.
  9. Mtiraoui, Amine & Boubaker, Heni & BelKacem, Lotfi, 2023. "A hybrid approach for forecasting bitcoin series," Research in International Business and Finance, Elsevier, vol. 66(C).
  10. Bauwens, Luc & Otranto, Edoardo, 2020. "Nonlinearities and regimes in conditional correlations with different dynamics," Journal of Econometrics, Elsevier, vol. 217(2), pages 496-522.
  11. Martens, Martin & van Dijk, Dick & de Pooter, Michiel, 2009. "Forecasting S&P 500 volatility: Long memory, level shifts, leverage effects, day-of-the-week seasonality, and macroeconomic announcements," International Journal of Forecasting, Elsevier, vol. 25(2), pages 282-303.
  12. Ke Yang & Langnan Chen & Fengping Tian, 2015. "Realized Volatility Forecast of Stock Index Under Structural Breaks," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 34(1), pages 57-82, January.
  13. Louzis Dimitrios P., 2016. "Steady-state priors and Bayesian variable selection in VAR forecasting," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 20(5), pages 495-527, December.
  14. Ali Taiebnia & Shapour Mohammadi, 2023. "Forecast accuracy of the linear and nonlinear autoregressive models in macroeconomic modeling," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(8), pages 2045-2062, December.
  15. Francesco Audrino & Peter Bühlmann, 2009. "Splines for financial volatility," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(3), pages 655-670, June.
  16. Daniela Osterrieder, 2013. "Interest Rates with Long Memory: A Generalized Affine Term-Structure Model," CREATES Research Papers 2013-17, Department of Economics and Business Economics, Aarhus University.
  17. Romano, Joseph P. & Shaikh, Azeem M. & Wolf, Michael, 2008. "Formalized Data Snooping Based On Generalized Error Rates," Econometric Theory, Cambridge University Press, vol. 24(2), pages 404-447, April.
  18. Małgorzata Doman & Ryszard Doman, 2013. "Dynamic linkages between stock markets: the effects of crises and globalization," Portuguese Economic Journal, Springer;Instituto Superior de Economia e Gestao, vol. 12(2), pages 87-112, August.
  19. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2006. "Volatility and Correlation Forecasting," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 15, pages 777-878, Elsevier.
  20. Francesco Audrino & Fabio Trojani, 2011. "A General Multivariate Threshold GARCH Model With Dynamic Conditional Correlations," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 29(1), pages 138-149, January.
  21. Luigi Grossi & Fany Nan, 2018. "The influence of renewables on electricity price forecasting: a robust approach," Working Papers 2018/10, Institut d'Economia de Barcelona (IEB).
  22. Adam E Clements & Mark Doolan & Stan Hurn & Ralf Becker, 2012. "Selecting forecasting models for portfolio allocation," NCER Working Paper Series 85, National Centre for Econometric Research.
  23. Cipollini, Fabrizio & Gallo, Giampiero M. & Otranto, Edoardo, 2021. "Realized volatility forecasting: Robustness to measurement errors," International Journal of Forecasting, Elsevier, vol. 37(1), pages 44-57.
  24. Luc Bauwens & Edoardo Otranto, 2023. "Modeling Realized Covariance Matrices: A Class of Hadamard Exponential Models," Journal of Financial Econometrics, Oxford University Press, vol. 21(4), pages 1376-1401.
  25. Clements, Adam & Liao, Yin, 2017. "Forecasting the variance of stock index returns using jumps and cojumps," International Journal of Forecasting, Elsevier, vol. 33(3), pages 729-742.
  26. Michiel de Pooter & Francesco Ravazzolo & Dick van Dijk, 2010. "Term structure forecasting using macro factors and forecast combination," Working Paper 2010/01, Norges Bank.
  27. Wang, Lu & Wu, Jiangbin & Cao, Yang & Hong, Yanran, 2022. "Forecasting renewable energy stock volatility using short and long-term Markov switching GARCH-MIDAS models: Either, neither or both?," Energy Economics, Elsevier, vol. 111(C).
  28. Dimitris Politis & Dimitrios Thomakos, 2007. "NoVaS Transformations: Flexible Inference for Volatility Forecasting," Working Papers 0005, University of Peloponnese, Department of Economics.
  29. Bauwens, Luc & Dzuverovic, Emilija & Hafner, Christian, 2024. "Asymmetric Models for Realized Covariances," LIDAM Discussion Papers CORE 2024024, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
  30. Małgorzata Doman & Ryszard Doman, 2014. "Dynamic Linkages in the Pairs (GBP/EUR, USD/EUR) and (GBP/USD, EUR/USD): How Do They Change During a Day?," Central European Journal of Economic Modelling and Econometrics, Central European Journal of Economic Modelling and Econometrics, vol. 6(1), pages 33-56, March.
  31. Bonato, Matteo & Caporin, Massimiliano & Ranaldo, Angelo, 2013. "Risk spillovers in international equity portfolios," Journal of Empirical Finance, Elsevier, vol. 24(C), pages 121-137.
  32. Fulvio Corsi & Stefano Peluso & Francesco Audrino, 2015. "Missing in Asynchronicity: A Kalman‐em Approach for Multivariate Realized Covariance Estimation," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 30(3), pages 377-397, April.
  33. Stavros Degiannakis & Evdokia Xekalaki, 2007. "Assessing the performance of a prediction error criterion model selection algorithm in the context of ARCH models," Applied Financial Economics, Taylor & Francis Journals, vol. 17(2), pages 149-171.
  34. Francesco Audrino & Yujia Hu, 2016. "Volatility Forecasting: Downside Risk, Jumps and Leverage Effect," Econometrics, MDPI, vol. 4(1), pages 1-24, February.
  35. Heni Boubaker & Bassem Saidane & Mouna Ben Saad Zorgati, 2022. "Modelling the dynamics of stock market in the gulf cooperation council countries: evidence on persistence to shocks," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-22, December.
  36. Bartsch, Zachary, 2019. "Economic policy uncertainty and dollar-pound exchange rate return volatility," Journal of International Money and Finance, Elsevier, vol. 98(C), pages 1-1.
  37. Renò, Roberto, 2008. "Nonparametric Estimation Of The Diffusion Coefficient Of Stochastic Volatility Models," Econometric Theory, Cambridge University Press, vol. 24(5), pages 1174-1206, October.
  38. Tobias Eckernkemper, 2018. "Modeling Systemic Risk: Time-Varying Tail Dependence When Forecasting Marginal Expected Shortfall," Journal of Financial Econometrics, Oxford University Press, vol. 16(1), pages 63-117.
  39. Fengler, Matthias R. & Okhrin, Ostap, 2016. "Managing risk with a realized copula parameter," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 131-152.
  40. Patra, Saswat, 2024. "An empirical analysis of the volume-volatility nexus in crude oil markets under structural breaks: Implications for forecasting," International Review of Economics & Finance, Elsevier, vol. 94(C).
  41. Ahmed, Shamim & Bu, Ziwen & Symeonidis, Lazaros & Tsvetanov, Daniel, 2023. "Which factor model? A systematic return covariation perspective," Journal of International Money and Finance, Elsevier, vol. 136(C).
  42. Aielli, Gian Piero & Caporin, Massimiliano, 2013. "Fast clustering of GARCH processes via Gaussian mixture models," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 94(C), pages 205-222.
  43. Gian Piero Aielli & Massimiliano Caporin, 2015. "Dynamic Principal Components: a New Class of Multivariate GARCH Models," "Marco Fanno" Working Papers 0193, Dipartimento di Scienze Economiche "Marco Fanno".
  44. Adam Clements & Ayesha Scott & Annastiina Silvennoinen, 2013. "On the Benefits of Equicorrelation for Portfolio Allocation," NCER Working Paper Series 99, National Centre for Econometric Research.
  45. Bauwens, Luc & Grigoryeva, Lyudmila & Ortega, Juan-Pablo, 2016. "Estimation and empirical performance of non-scalar dynamic conditional correlation models," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 17-36.
  46. Audrino, Francesco, 2014. "Forecasting correlations during the late-2000s financial crisis: The short-run component, the long-run component, and structural breaks," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 43-60.
  47. BAUWENS, Luc & otranto, EDOARDO, 2013. "Modeling the dependence of conditional correlations on volatility," LIDAM Discussion Papers CORE 2013014, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
  48. Guangying Liu & Ziyan Zhuang & Min Wang, 2024. "Forecasting the high‐frequency volatility based on the LSTM‐HIT model," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(5), pages 1356-1373, August.
  49. Becker, R. & Clements, A.E. & Doolan, M.B. & Hurn, A.S., 2015. "Selecting volatility forecasting models for portfolio allocation purposes," International Journal of Forecasting, Elsevier, vol. 31(3), pages 849-861.
  50. D Aromi & A Clements, 2018. "Media attention and crude oil volatility: Is there any 'new' news in the newspaper?," NCER Working Paper Series 118, National Centre for Econometric Research.
  51. Zhu, Jiaji & Han, Wei & Zhang, Junchao, 2023. "Does climate risk matter for gold price volatility?," Finance Research Letters, Elsevier, vol. 58(PC).
  52. Rohini Grover & Susan Thomas, 2012. "Liquidity Considerations in Estimating Implied Volatility," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 32(8), pages 714-741, August.
  53. Liu, Min, 2022. "The driving forces of green bond market volatility and the response of the market to the COVID-19 pandemic," Economic Analysis and Policy, Elsevier, vol. 75(C), pages 288-309.
  54. Carol Alexander & Emese Lazar, 2009. "Modelling Regime‐Specific Stock Price Volatility," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 71(6), pages 761-797, December.
  55. Caporin, Massimiliano & McAleer, Michael, 2014. "Robust ranking of multivariate GARCH models by problem dimension," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 172-185.
  56. Li, Dan & Drovandi, Christopher & Clements, Adam, 2024. "Outlier-robust methods for forecasting realized covariance matrices," International Journal of Forecasting, Elsevier, vol. 40(1), pages 392-408.
  57. Audrino, Francesco, 2006. "The impact of general non-parametric volatility functions in multivariate GARCH models," Computational Statistics & Data Analysis, Elsevier, vol. 50(11), pages 3032-3052, July.
  58. Wang, Yajing & Liang, Fang & Wang, Tianyi & Huang, Zhuo, 2020. "Does measurement error matter in volatility forecasting? Empirical evidence from the Chinese stock market," Economic Modelling, Elsevier, vol. 87(C), pages 148-157.
  59. Sauraj Verma, 2021. "Forecasting volatility of crude oil futures using a GARCH–RNN hybrid approach," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 28(2), pages 130-142, April.
  60. G. C. Livingston & Darfiana Nur, 2023. "Bayesian inference of multivariate-GARCH-BEKK models," Statistical Papers, Springer, vol. 64(5), pages 1749-1774, October.
  61. Emilija Dzuverovic & Matteo Barigozzi, 2023. "Hierarchical DCC-HEAVY Model for High-Dimensional Covariance Matrices," Papers 2305.08488, arXiv.org, revised Jul 2024.
  62. J. Eduardo Vera‐Valdés, 2020. "On long memory origins and forecast horizons," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(5), pages 811-826, August.
  63. Marchese, Malvina & Kyriakou, Ioannis & Tamvakis, Michael & Di Iorio, Francesca, 2020. "Forecasting crude oil and refined products volatilities and correlations: New evidence from fractionally integrated multivariate GARCH models," Energy Economics, Elsevier, vol. 88(C).
  64. Luigi Grossi & Fany Nan, 2017. "Forecasting electricity prices through robust nonlinear models," Working Papers 06/2017, University of Verona, Department of Economics.
  65. Bauwens, Luc & Xu, Yongdeng, 2023. "The contribution of realized covariance models to the economic value of volatility timing," Cardiff Economics Working Papers E2023/20, Cardiff University, Cardiff Business School, Economics Section.
  66. Grigoryeva, Lyudmila & Ortega, Juan-Pablo & Peresetsky, Anatoly, 2018. "Volatility forecasting using global stochastic financial trends extracted from non-synchronous data," Econometrics and Statistics, Elsevier, vol. 5(C), pages 67-82.
  67. Ralf Becker & Adam Clements & Christopher Coleman-Fenn, 2009. "Forecast performance of implied volatility and the impact of the volatility risk premium," NCER Working Paper Series 45, National Centre for Econometric Research.
  68. Radovan Parrák, 2013. "The Economic Valuation of Variance Forecasts: An Artificial Option Market Approach," Working Papers IES 2013/09, Charles University Prague, Faculty of Social Sciences, Institute of Economic Studies, revised Aug 2013.
  69. Grossi, Luigi & Nan, Fany, 2019. "Robust forecasting of electricity prices: Simulations, models and the impact of renewable sources," Technological Forecasting and Social Change, Elsevier, vol. 141(C), pages 305-318.
  70. Borgsen, Sina & Glaser, Markus, 2005. "Diversifikationseffekte durch Small und Mid Caps?," Sonderforschungsbereich 504 Publications 05-10, Sonderforschungsbereich 504, Universität Mannheim;Sonderforschungsbereich 504, University of Mannheim.
  71. Borgsen, Sina & Glaser, Markus, 2005. "Diversifikationseffekte durch small und mid caps? : Eine empirische Untersuchung basierend auf europäischen Aktienindizes," Papers 05-10, Sonderforschungsbreich 504.
  72. Giovanni Barone-Adesi & Francesco Audrino, 2006. "Average conditional correlation and tree structures for multivariate GARCH models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 25(8), pages 579-600.
  73. Davide De Gaetano, 2016. "Forecast Combinations For Realized Volatility In Presence Of Structural Breaks," Departmental Working Papers of Economics - University 'Roma Tre' 0208, Department of Economics - University Roma Tre.
  74. Mila Andreani & Vincenzo Candila & Giacomo Morelli & Lea Petrella, 2021. "Multivariate Analysis of Energy Commodities during the COVID-19 Pandemic: Evidence from a Mixed-Frequency Approach," Risks, MDPI, vol. 9(8), pages 1-20, August.
  75. Adam Clements & Mark Bernard Doolan, 2020. "Combining multivariate volatility forecasts using weighted losses," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(4), pages 628-641, July.
  76. Chiranjit Dutta & Kara Karpman & Sumanta Basu & Nalini Ravishanker, 2023. "Review of Statistical Approaches for Modeling High-Frequency Trading Data," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 85(1), pages 1-48, May.
  77. Bordignon, Silvano & Bunn, Derek W. & Lisi, Francesco & Nan, Fany, 2013. "Combining day-ahead forecasts for British electricity prices," Energy Economics, Elsevier, vol. 35(C), pages 88-103.
  78. Zhang, Li & Li, Yan & Yu, Sixin & Wang, Lu, 2023. "Risk transmission of El Niño-induced climate change to regional Green Economy Index," Economic Analysis and Policy, Elsevier, vol. 79(C), pages 860-872.
  79. Jack Fosten & Daniel Gutknecht, 2021. "Horizon confidence sets," Empirical Economics, Springer, vol. 61(2), pages 667-692, August.
  80. Ralf Becker & Adam Clements & Robert O'Neill, 2018. "A Multivariate Kernel Approach to Forecasting the Variance Covariance of Stock Market Returns," Econometrics, MDPI, vol. 6(1), pages 1-27, February.
  81. Adam E Clements & Ayesha Scott & Annastiina Silvennoinen, 2012. "Forecasting multivariate volatility in larger dimensions: some practical issues," NCER Working Paper Series 80, National Centre for Econometric Research.
  82. Hansen, Peter R. & Lunde, Asger, 2006. "Realized Variance and Market Microstructure Noise," Journal of Business & Economic Statistics, American Statistical Association, vol. 24, pages 127-161, April.
  83. Benjamin Poignard & Manabu Asai, 2023. "High‐dimensional sparse multivariate stochastic volatility models," Journal of Time Series Analysis, Wiley Blackwell, vol. 44(1), pages 4-22, January.
  84. R. Khalfaoui & M. Boutahar, 2012. "Portfolio Risk Evaluation: An Approach Based on Dynamic Conditional Correlations Models and Wavelet Multi-Resolution Analysis," Working Papers halshs-00793068, HAL.
  85. Malgorzata Doman & Ryszard Doman, 2013. "The Dynamics and Strength of Linkages between the Stock Markets in the Czech Republic, Hungary and Poland after their EU Accession," Dynamic Econometric Models, Uniwersytet Mikolaja Kopernika, vol. 13, pages 5-32.
  86. G.R. Pasha & Tahira Qasim & Muhammad Aslam, 2007. "Estimating and Forecasting Volatility of Financial Time Series in Pakistan with GARCH-type Models," Lahore Journal of Economics, Department of Economics, The Lahore School of Economics, vol. 12(2), pages 115-149, Jul-Dec.
  87. Mauro Bernardi & Leopoldo Catania, 2016. "Comparison of Value-at-Risk models using the MCS approach," Computational Statistics, Springer, vol. 31(2), pages 579-608, June.
  88. Min Liu & Chien‐Chiang Lee & Wei‐Chong Choo, 2021. "An empirical study on the role of trading volume and data frequency in volatility forecasting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(5), pages 792-816, August.
  89. Gael M. Martin & Andrew Reidy & Jill Wright, 2009. "Does the option market produce superior forecasts of noise-corrected volatility measures?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 24(1), pages 77-104.
  90. Trino-Manuel Ñíguez & Javier Perote, 2012. "Forecasting Heavy-Tailed Densities with Positive Edgeworth and Gram-Charlier Expansions," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 74(4), pages 600-627, August.
  91. Adam Clements & Ralf Becker, 2009. "A nonparametric approach to forecasting realized volatility," NCER Working Paper Series 43, National Centre for Econometric Research.
  92. Bauwens, Luc & Otranto, Edoardo, 2023. "Realized Covariance Models with Time-varying Parameters and Spillover Effects," LIDAM Discussion Papers CORE 2023019, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
  93. Yu, Jize & Zhang, Li & Peng, Lijuan & Wu, Rui, 2023. "Which component of air quality index drives stock price volatility in China: a decomposition-based forecasting method," Finance Research Letters, Elsevier, vol. 51(C).
  94. Alejandro Parot & Kevin Michell & Werner D. Kristjanpoller, 2019. "Using Artificial Neural Networks to forecast Exchange Rate, including VAR‐VECM residual analysis and prediction linear combination," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 26(1), pages 3-15, January.
  95. Maurício Yoshinori Une & Marcelo Savino Portugal, 2005. "Can fear beat hope? A story of GARCH-in-Mean-Level effects for Emerging Market Country Risks," Econometrics 0509006, University Library of Munich, Germany.
  96. Francesco Audrino & Robert Fernholz & Roberto Ferretti, 2007. "A Forecasting Model for Stock Market Diversity," Annals of Finance, Springer, vol. 3(2), pages 213-240, March.
  97. Becker Ralf & Clements Adam E & Hurn Stan, 2011. "Semi-Parametric Forecasting of Realized Volatility," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 15(3), pages 1-23, May.
  98. Korkusuz, Burak & Kambouroudis, Dimos & McMillan, David G., 2023. "Do extreme range estimators improve realized volatility forecasts? Evidence from G7 Stock Markets," Finance Research Letters, Elsevier, vol. 55(PB).
  99. Angelos T. Vouldis & Dimitrios P. Louzis, 2018. "Leading indicators of non-performing loans in Greece: the information content of macro-, micro- and bank-specific variables," Empirical Economics, Springer, vol. 54(3), pages 1187-1214, May.
  100. Chen, Wei & Xu, Huilin & Jia, Lifen & Gao, Ying, 2021. "Machine learning model for Bitcoin exchange rate prediction using economic and technology determinants," International Journal of Forecasting, Elsevier, vol. 37(1), pages 28-43.
  101. Becker, Christoph & Schmidt, Wolfgang M., 2015. "How past market movements affect correlation and volatility," Journal of International Money and Finance, Elsevier, vol. 50(C), pages 78-107.
  102. Malgorzata Doman & Ryszard Doman, 2011. "The Impact of the Exchange Rate Dynamics on the Dependencies in Global Stock Market," Dynamic Econometric Models, Uniwersytet Mikolaja Kopernika, vol. 11, pages 73-86.
  103. Syed Ali Asad Rizvi & Stephen J. Roberts & Michael A. Osborne & Favour Nyikosa, 2017. "A Novel Approach to Forecasting Financial Volatility with Gaussian Process Envelopes," Papers 1705.00891, arXiv.org.
  104. Dimitris P. Louzis, 2014. "Macroeconomic and credit forecasts in a small economy during crisis: A large Bayesian VAR approach," Working Papers 184, Bank of Greece.
  105. Adriano Koshiyama & Nick Firoozye, 2019. "Avoiding Backtesting Overfitting by Covariance-Penalties: an empirical investigation of the ordinary and total least squares cases," Papers 1905.05023, arXiv.org.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.