My bibliography
Save this item
A survey of econometric methods for mixed-frequency data
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Aliocha Accardo & Sylvérie Herbert & Cristina Jude & Adrian Penalver, 2023. "Measuring and Comparing Consumption Inequality between France and the United States," Working papers 904, Banque de France.
- Afees A. Salisu & Rangan Gupta, 2021.
"How Do Housing Returns in Emerging Countries Respond to Oil Shocks? A MIDAS Touch,"
Emerging Markets Finance and Trade, Taylor & Francis Journals, vol. 57(15), pages 4286-4311, December.
- Afees A. Salisu & Rangan Gupta, 2019. "How do Housing Returns in Emerging Countries Respond to Oil Shocks? A MIDAS Touch," Working Papers 201946, University of Pretoria, Department of Economics.
- Hale, Galina & Lopez, Jose A., 2019.
"Monitoring banking system connectedness with big data,"
Journal of Econometrics, Elsevier, vol. 212(1), pages 203-220.
- Galina Hale & Jose A. Lopez, 2018. "Monitoring Banking System Connectedness with Big Data," Working Paper Series 2018-01, Federal Reserve Bank of San Francisco.
- Hale, Galina & Lopez, Jose A, 2023. "Monitoring Banking System Connectedness with Big Data," Santa Cruz Department of Economics, Working Paper Series qt17h5v7rj, Department of Economics, UC Santa Cruz.
- Alexander Chudik & Georgios Georgiadis, 2022.
"Estimation of Impulse Response Functions When Shocks Are Observed at a Higher Frequency Than Outcome Variables,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 40(3), pages 965-979, June.
- Alexander Chudik & Georgios Georgiadis, 2019. "Estimation of Impulse Response Functions When Shocks are Observed at a Higher Frequency than Outcome Variables," Globalization Institute Working Papers 356, Federal Reserve Bank of Dallas.
- Chudik, Alexander & Georgiadis, Georgios, 2019. "Estimation of impulse response functions when shocks are observed at a higher frequency than outcome variables," Working Paper Series 2307, European Central Bank.
- Michal Franta & David Havrlant & Marek Rusnák, 2016.
"Forecasting Czech GDP Using Mixed-Frequency Data Models,"
Journal of Business Cycle Research, Springer;Centre for International Research on Economic Tendency Surveys (CIRET), vol. 12(2), pages 165-185, December.
- Michal Franta & David Havrlant & Marek Rusnak, 2014. "Forecasting Czech GDP Using Mixed-Frequency Data Models," Working Papers 2014/08, Czech National Bank.
- Prabheesh, K.P. & Sasongko, Aryo & Indawan, Fiskara, 2023. "Did the policy responses influence credit and business cycle co-movement during the COVID-19 crisis? Evidence from Indonesia," Economic Analysis and Policy, Elsevier, vol. 78(C), pages 243-255.
- Özer Karagedikli & Murat Özbilgin, 2019. "Mixed in New Zealand: Nowcasting Labour Markets with MIDAS," Reserve Bank of New Zealand Analytical Notes series AN2019/04, Reserve Bank of New Zealand.
- Markus Heinrich & Magnus Reif, 2018. "Forecasting using mixed-frequency VARs with time-varying parameters," ifo Working Paper Series 273, ifo Institute - Leibniz Institute for Economic Research at the University of Munich.
- Kaustubh & Soumya Bhadury & Saurabh Ghosh, 2024. "Reinvigorating Gva Nowcasting In The Postpandemic Period: A Case Study For India," Bulletin of Monetary Economics and Banking, Bank Indonesia, vol. 27(Spesial I), pages 95-130, Februari.
- Fady Barsoum, 2015. "Point and Density Forecasts Using an Unrestricted Mixed-Frequency VAR Model," Working Paper Series of the Department of Economics, University of Konstanz 2015-19, Department of Economics, University of Konstanz.
- An, Yimeng & Dang, Yaoguo & Wang, Junjie & Zhou, Huimin & Mai, Son T., 2024. "Mixed-frequency data Sampling Grey system Model: Forecasting annual CO2 emissions in China with quarterly and monthly economic-energy indicators," Applied Energy, Elsevier, vol. 370(C).
- Asger Lunde & Miha Torkar, 2020. "Including news data in forecasting macro economic performance of China," Computational Management Science, Springer, vol. 17(4), pages 585-611, December.
- Das, Sonali & Demirer, Riza & Gupta, Rangan & Mangisa, Siphumlile, 2019.
"The effect of global crises on stock market correlations: Evidence from scalar regressions via functional data analysis,"
Structural Change and Economic Dynamics, Elsevier, vol. 50(C), pages 132-147.
- Sonali Das & Riza Demirer & Rangan Gupta & Siphumlile Mangisa, 2019. "The Effect of Global Crises on Stock Market Correlations: Evidence from Scalar Regressions via Functional Data Analysis," Working Papers 201908, University of Pretoria, Department of Economics.
- Rusnák, Marek, 2016.
"Nowcasting Czech GDP in real time,"
Economic Modelling, Elsevier, vol. 54(C), pages 26-39.
- Marek Rusnak, 2013. "Nowcasting Czech GDP in Real Time," Working Papers 2013/06, Czech National Bank.
- Xianning WANG & Jingrong DONG & Zhi XIAO & Guanjie HE, 2019. "A novel spatial mixed frequency forecasting model with application to Chinese regional GDP," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(2), pages 54-77, June.
- Vegard H ghaug Larsen & Leif Anders Thorsrud, 2018.
"Business cycle narratives,"
Working Papers
No 6/2018, Centre for Applied Macro- and Petroleum economics (CAMP), BI Norwegian Business School.
- Vegard H. Larsen & Leif Anders Thorsrud, 2019. "Business Cycle Narratives," CESifo Working Paper Series 7468, CESifo.
- Vegard H. Larsen & Leif Anders Thorsrud, 2018. "Business cycle narratives," Working Paper 2018/3, Norges Bank.
- Maas, Daniel & Mayer, Eric & Rüth, Sebastian, 2015. "Current account dynamics and the housing boom and bust cycle in Spain," W.E.P. - Würzburg Economic Papers 94, University of Würzburg, Department of Economics.
- Bahar Şen Doğan & Murat Midiliç, 2019. "Forecasting Turkish real GDP growth in a data-rich environment," Empirical Economics, Springer, vol. 56(1), pages 367-395, January.
- Sarun Kamolthip, 2021.
"Macroeconomic Forecasting with LSTM and Mixed Frequency Time Series Data,"
PIER Discussion Papers
165, Puey Ungphakorn Institute for Economic Research.
- Sarun Kamolthip, 2021. "Macroeconomic forecasting with LSTM and mixed frequency time series data," Papers 2109.13777, arXiv.org.
- Leif Anders Thorsrud, 2020.
"Words are the New Numbers: A Newsy Coincident Index of the Business Cycle,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 38(2), pages 393-409, April.
- Leif Anders Thorsrud, 2016. "Words are the new numbers: A newsy coincident index of business cycles," Working Paper 2016/21, Norges Bank.
- Leif Anders Thorsrud, 2016. "Words are the new numbers: A newsy coincident index of business cycles," Working Papers No 4/2016, Centre for Applied Macro- and Petroleum economics (CAMP), BI Norwegian Business School.
- Bonino-Gayoso, Nicolás & García-Hiernaux, Alfredo, 2019. "TF-MIDAS: a new mixed-frequency model to forecast macroeconomic variables," MPRA Paper 93366, University Library of Munich, Germany.
- Foroni, Claudia & Marcellino, Massimiliano & Stevanović, Dalibor, 2018.
"Mixed frequency models with MA components,"
Discussion Papers
02/2018, Deutsche Bundesbank.
- Foroni, Claudia & Marcellino, Massimiliano & Stevanović, Dalibor, 2018. "Mixed frequency models with MA components," Working Paper Series 2206, European Central Bank.
- Jin, Sainan & Miao, Ke & Su, Liangjun, 2021.
"On factor models with random missing: EM estimation, inference, and cross validation,"
Journal of Econometrics, Elsevier, vol. 222(1), pages 745-777.
- Su, Liangjun & Miao, Ke & Jin, Sainan, 2019. "On Factor Models with Random Missing: EM Estimation, Inference, and Cross Validation," Economics and Statistics Working Papers 4-2019, Singapore Management University, School of Economics.
- Freitag L., 2014. "Default probabilities, CDS premiums and downgrades : A probit-MIDAS analysis," Research Memorandum 038, Maastricht University, Graduate School of Business and Economics (GSBE).
- Heiner Mikosch & Laura Solanko, 2019. "Forecasting Quarterly Russian GDP Growth with Mixed-Frequency Data," Russian Journal of Money and Finance, Bank of Russia, vol. 78(1), pages 19-35, March.
- Raffaele Mattera & Michelangelo Misuraca & Maria Spano & Germana Scepi, 2023. "Mixed frequency composite indicators for measuring public sentiment in the EU," Quality & Quantity: International Journal of Methodology, Springer, vol. 57(3), pages 2357-2382, June.
- Grant Allan & Gary Koop & Stuart McIntyre & Paul Smith, 2014.
"Nowcasting Scottish GDP Growth,"
Working Paper series
41_14, Rimini Centre for Economic Analysis.
- Allan, Grant & Koop, Gary & McIntyre, Stuart & Smith, Paul, 2014. "Nowcasting Scottish GDP Growth," SIRE Discussion Papers 2015-08, Scottish Institute for Research in Economics (SIRE).
- Grant Allan & Gary Koop & Stuart McIntyre & Paul Smith, 2014. "Nowcasting Scottish GDP growth," Working Papers 1411, University of Strathclyde Business School, Department of Economics.
- Jacopo Cimadomo & Antonello D'Agostino, 2016.
"Combining Time Variation and Mixed Frequencies: an Analysis of Government Spending Multipliers in Italy,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 31(7), pages 1276-1290, November.
- D'Agostino, Antonello & Cimadomo, Jacopo, 2015. "Combining time-variation and mixed-frequencies: an analysis of government spending multipliers in Italy," Working Paper Series 1856, European Central Bank.
- Antonello D’Agostino & Jacopo Cimadomo, 2015. "Combining time-variation and mixed-frequencies: an analysis of government spending multipliers in Italy," Working Papers 7, European Stability Mechanism.
- Anna Samarina & Anh D.M. Nguyen, 2019.
"Does monetary policy affect income inequality in the euro area?,"
Bank of Lithuania Working Paper Series
61, Bank of Lithuania.
- Anna Samarina & Anh D.M. Nguyen, 2019. "Does monetary policy affect income inequality in the euro area?," DNB Working Papers 626, Netherlands Central Bank, Research Department.
- Clements, Michael P. & Galvão, Ana Beatriz, 2017. "Model and survey estimates of the term structure of US macroeconomic uncertainty," International Journal of Forecasting, Elsevier, vol. 33(3), pages 591-604.
- Johnson Worlanyo Ahiadorme, 2022.
"Monetary policy transmission and income inequality in Sub-Saharan Africa,"
Economic Change and Restructuring, Springer, vol. 55(3), pages 1555-1585, August.
- Ahiadorme, Johnson Worlanyo, 2020. "Monetary policy transmission and income inequality in Sub-Saharan Africa," MPRA Paper 104084, University Library of Munich, Germany.
- Heinrich, Markus, 2020. "Does the Current State of the Business Cycle matter for Real-Time Forecasting? A Mixed-Frequency Threshold VAR approach," EconStor Preprints 219312, ZBW - Leibniz Information Centre for Economics.
- Jung, Alexander, 2017. "Forecasting broad money velocity," The North American Journal of Economics and Finance, Elsevier, vol. 42(C), pages 421-432.
- João B. Assunção & Pedro Afonso Fernandes, 2022. "Nowcasting GDP: An Application to Portugal," Forecasting, MDPI, vol. 4(3), pages 1-15, August.
- Salisu, Afees A. & Gupta, Rangan, 2021.
"Oil shocks and stock market volatility of the BRICS: A GARCH-MIDAS approach,"
Global Finance Journal, Elsevier, vol. 48(C).
- Afees A. Salisu & Rangan Gupta, 2019. "Oil Shocks and Stock Market Volatility of the BRICS: A GARCH-MIDAS Approach," Working Papers 201976, University of Pretoria, Department of Economics.
- Daniel L. Millimet & Ian K. McDonough, 2017.
"Dynamic Panel Data Models With Irregular Spacing: With an Application to Early Childhood Development,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 32(4), pages 725-743, June.
- Millimet, Daniel L. & McDonough, Ian K., 2013. "Dynamic Panel Data Models with Irregular Spacing: With Applications to Early Childhood Development," IZA Discussion Papers 7359, Institute of Labor Economics (IZA).
- Tony Chernis & Rodrigo Sekkel, 2018. "Nowcasting Canadian Economic Activity in an Uncertain Environment," Discussion Papers 18-9, Bank of Canada.
- Staehr, Karsten & Vermeulen, Robert, 2016. "How competitiveness shocks affect macroeconomic performance across euro area countries," Working Paper Series 1940, European Central Bank.
- Sylvia Kaufmann, 2023. "Covid-19 outbreak and beyond: a retrospect on the information content of short-time workers for GDP now- and forecasting," Swiss Journal of Economics and Statistics, Springer;Swiss Society of Economics and Statistics, vol. 159(1), pages 1-10, December.
- Magnus Reif, 2020. "Macroeconomics, Nonlinearities, and the Business Cycle," ifo Beiträge zur Wirtschaftsforschung, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 87.
- Allan, Grant & Koop, Gary & McIntyre, Stuart & Smith, Paul, 2014. "Nowcasting Scottish GDP Growth," 2007 Annual Meeting, July 29-August 1, 2007, Portland, Oregon TN 2015-08, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
- Kertlly de Medeiros, Rennan & da Nóbrega Besarria, Cássio & Pitta de Jesus, Diego & Phillipe de Albuquerquemello, Vinicius, 2022. "Forecasting oil prices: New approaches," Energy, Elsevier, vol. 238(PC).
- Foroni, Claudia & Guérin, Pierre & Marcellino, Massimiliano, 2015.
"Markov-switching mixed-frequency VAR models,"
International Journal of Forecasting, Elsevier, vol. 31(3), pages 692-711.
- Marcellino, Massimiliano & Foroni, Claudia, 2014. "Markov-Switching Mixed-Frequency VAR Models," CEPR Discussion Papers 9815, C.E.P.R. Discussion Papers.
- Boriss Siliverstovs, 2020.
"Assessing nowcast accuracy of US GDP growth in real time: the role of booms and busts,"
Empirical Economics, Springer, vol. 58(1), pages 7-27, January.
- Boriss Siliverstovs, 2019. "Assessing Nowcast Accuracy of US GDP Growth in Real Time: The Role of Booms and Busts," Working Papers 2019/01, Latvijas Banka.
- Ankargren Sebastian & Unosson Måns & Yang Yukai, 2020.
"A Flexible Mixed-Frequency Vector Autoregression with a Steady-State Prior,"
Journal of Time Series Econometrics, De Gruyter, vol. 12(2), pages 1-41, July.
- Ankargren Sebastian & Unosson Måns & Yang Yukai, 2020. "A Flexible Mixed-Frequency Vector Autoregression with a Steady-State Prior," Journal of Time Series Econometrics, De Gruyter, vol. 12(2), pages 1-41, July.
- Sebastian Ankargren & M{aa}ns Unosson & Yukai Yang, 2019. "A Flexible Mixed-Frequency Vector Autoregression with a Steady-State Prior," Papers 1911.09151, arXiv.org.
- Gani Ramadani & Magdalena Petrovska & Vesna Bucevska, 2021. "Evaluation of mixed frequency approaches for tracking near-term economic developments in North Macedonia," Working Papers 2021-03, National Bank of the Republic of North Macedonia.
- Mariano, Roberto S. & Ozmucur, Suleyman, 2015. "High-Mixed-Frequency Dynamic Latent Factor Forecasting Models for GDP in the Philippines/Modelos de factores dinámicos latentes con datos mixtos de alta frecuencia aplicados a la predicción del PIB en," Estudios de Economia Aplicada, Estudios de Economia Aplicada, vol. 33, pages 451-462, Mayo.
- Löchel, H. & Packham, N. & Walisch, F., 2016. "Determinants of the onshore and offshore Chinese government yield curves," Pacific-Basin Finance Journal, Elsevier, vol. 36(C), pages 77-93.
- Guy P. Nason & Ben Powell & Duncan Elliott & Paul A. Smith, 2017. "Should we sample a time series more frequently?: decision support via multirate spectrum estimation," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 180(2), pages 353-407, February.
- Lin, Jiahe & Michailidis, George, 2024. "A multi-task encoder-dual-decoder framework for mixed frequency data prediction," International Journal of Forecasting, Elsevier, vol. 40(3), pages 942-957.
- Yun Liu & Yeonwoo Rho, 2018. "On the Choice of Instruments in Mixed Frequency Specification Tests," Papers 1809.05503, arXiv.org.
- Grant Allan & Gary Koop & Stuart McIntyre & Paul Smith, 2019. "Nowcasting Using Mixed Frequency Methods: An Application to the Scottish Economy," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 81(1), pages 12-45, September.
- Santiago Etchegaray Alvarez, 2022. "Proyecciones macroeconómicas con datos en frecuencias mixtas. Modelos ADL-MIDAS, U-MIDAS y TF-MIDAS con aplicaciones para Uruguay," Documentos de trabajo 2022004, Banco Central del Uruguay.
- Červená, Marianna & Schneider, Martin, 2014.
"Short-term forecasting of GDP with a DSGE model augmented by monthly indicators,"
International Journal of Forecasting, Elsevier, vol. 30(3), pages 498-516.
- Marianna Cervená & Martin Schneider, 2010. "Short-term forecasting GDP with a DSGE model augmented by monthly indicators," Working Papers 163, Oesterreichische Nationalbank (Austrian Central Bank).
- Marie Bessec, 2015. "Revisiting the transitional dynamics of business-cycle phases with mixed frequency data," Post-Print hal-01276824, HAL.
- Chambers, Marcus J., 2016.
"The estimation of continuous time models with mixed frequency data,"
Journal of Econometrics, Elsevier, vol. 193(2), pages 390-404.
- Chambers, MJ, 2016. "The Estimation of Continuous Time Models with Mixed Frequency Data," Economics Discussion Papers 15988, University of Essex, Department of Economics.
- Barış Soybilgen & M. Ege Yazgan & Hüseyin Kaya, 2023. "Nowcasting Turkish Food Inflation Using Daily Online Prices," Journal of Business Cycle Research, Springer;Centre for International Research on Economic Tendency Surveys (CIRET), vol. 19(2), pages 171-190, September.
- Staehr, Karsten & Vermeulen, Robert, 2016.
"How competitiveness shocks affect macroeconomic performance across euro area countries,"
Working Paper Series
1940, European Central Bank.
- Karsten Staehr & Robert Vermeulen, 2016. "How competitiveness shocks affect macroeconomic performance across euro area countries," DNB Working Papers 515, Netherlands Central Bank, Research Department.
- Khalaf, Lynda & Kichian, Maral & Saunders, Charles J. & Voia, Marcel, 2021.
"Dynamic panels with MIDAS covariates: Nonlinearity, estimation and fit,"
Journal of Econometrics, Elsevier, vol. 220(2), pages 589-605.
- Lynda Khalaf & Maral Kichian & Charles Saunders & Marcel Voia, 2021. "Dynamic panels with MIDAS covariates: Nonlinearity, estimation and fit," Post-Print hal-03528880, HAL.
- Deistler, Manfred & Koelbl, Lukas & Anderson, Brian D.O., 2017. "Non-identifiability of VMA and VARMA systems in the mixed frequency case," Econometrics and Statistics, Elsevier, vol. 4(C), pages 31-38.
- repec:dau:papers:123456789/15246 is not listed on IDEAS
- Heiner Mikosch & Ying Zhang, 2014. "Forecasting Chinese GDP Growth with Mixed Frequency Data," KOF Working papers 14-359, KOF Swiss Economic Institute, ETH Zurich.
- Stock, J.H. & Watson, M.W., 2016. "Dynamic Factor Models, Factor-Augmented Vector Autoregressions, and Structural Vector Autoregressions in Macroeconomics," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 415-525, Elsevier.
- Ghysels, Eric & Qian, Hang, 2019. "Estimating MIDAS regressions via OLS with polynomial parameter profiling," Econometrics and Statistics, Elsevier, vol. 9(C), pages 1-16.
- Smith Paul, 2016. "Nowcasting UK GDP during the depression," Working Papers 1606, University of Strathclyde Business School, Department of Economics.
- Deschamps, Bruno & Ioannidis, Christos & Ka, Kook, 2020. "High-frequency credit spread information and macroeconomic forecast revision," International Journal of Forecasting, Elsevier, vol. 36(2), pages 358-372.
- Eugen Scarlat, 2016. "Connectivity - Based Clustering of GDP Time Series," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(1), pages 23-38, March.
- Schumacher, Christian, 2016. "A comparison of MIDAS and bridge equations," International Journal of Forecasting, Elsevier, vol. 32(2), pages 257-270.
- Emilian DOBRESCU, 2020. "Self-fulfillment degree of economic expectations within an integrated space: The European Union case study," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(4), pages 5-32, December.
- Wichitaksorn, Nuttanan, 2022. "Analyzing and forecasting Thai macroeconomic data using mixed-frequency approach," Journal of Asian Economics, Elsevier, vol. 78(C).
- Daniel Wochner, 2020. "Dynamic Factor Trees and Forests – A Theory-led Machine Learning Framework for Non-Linear and State-Dependent Short-Term U.S. GDP Growth Predictions," KOF Working papers 20-472, KOF Swiss Economic Institute, ETH Zurich.
- Trujillo-Barrera, Andres & Pennings, Joost M.E., 2013. "Energy and Food Commodity Prices Linkage: An Examination with Mixed-Frequency Data," 2013 Annual Meeting, August 4-6, 2013, Washington, D.C. 150465, Agricultural and Applied Economics Association.
- Emilio Blanco & Fiorella Dogliolo & Lorena Garegnani, 2022. "Nowcasting during the Pandemic: Lessons from Argentina," BCRA Working Paper Series 202299, Central Bank of Argentina, Economic Research Department.
- Goldmann, Leonie & Crook, Jonathan & Calabrese, Raffaella, 2024. "A new ordinal mixed-data sampling model with an application to corporate credit rating levels," European Journal of Operational Research, Elsevier, vol. 314(3), pages 1111-1126.
- Frömmel, Michael & Midiliç, Murat, 2021. "Daily currency interventions in an emerging market: Incorporating reserve accumulation to the reaction function," Economic Modelling, Elsevier, vol. 97(C), pages 461-476.