My bibliography
Save this item
Modelling multiple time series via common factors
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Carlos Trucíos & João H. G. Mazzeu & Marc Hallin & Luiz K. Hotta & Pedro L. Valls Pereira & Mauricio Zevallos, 2022.
"Forecasting Conditional Covariance Matrices in High-Dimensional Time Series: A General Dynamic Factor Approach,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 41(1), pages 40-52, December.
- Marc Hallin & Luis K. Hotta & João H. G Mazzeu & Carlos Cesar Trucios-Maza & Pedro L. Valls Pereira & Mauricio Zevallos, 2019. "Forecasting Conditional Covariance Matrices in High-Dimensional Time Series: a General Dynamic Factor Approach," Working Papers ECARES 2019-14, ULB -- Universite Libre de Bruxelles.
- Trucíos Maza, Carlos César & Mazzeu, João H. G. & Hallin, Marc & Hotta, Luiz Koodi & Pereira, Pedro L. Valls & Zevallos, Mauricio, 2019. "Forecasting conditional covariance matrices in high-dimensional time series: a general dynamic factor approach," Textos para discussão 505, FGV EESP - Escola de Economia de São Paulo, Fundação Getulio Vargas (Brazil).
- Daniel Peña & Victor J. Yohai, 2016. "Generalized Dynamic Principal Components," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(515), pages 1121-1131, July.
- Zhaoxing Gao & Ruey S. Tsay, 2021. "Divide-and-Conquer: A Distributed Hierarchical Factor Approach to Modeling Large-Scale Time Series Data," Papers 2103.14626, arXiv.org.
- Chang, Jinyuan & Guo, Bin & Yao, Qiwei, 2015. "High dimensional stochastic regression with latent factors, endogeneity and nonlinearity," LSE Research Online Documents on Economics 61886, London School of Economics and Political Science, LSE Library.
- Jiti Gao & Guangming Pan & Yanrong Yang & Bo Zhang, 2019. "Estimation of Cross-Sectional Dependence in Large Panels," Papers 1904.06843, arXiv.org.
- Tobias Hartl & Roland Weigand, 2018.
"Multivariate Fractional Components Analysis,"
Papers
1812.09149, arXiv.org, revised Jan 2019.
- Hartl, Tobias & Weigand, Roland, 2019. "Multivariate Fractional Components Analysis," University of Regensburg Working Papers in Business, Economics and Management Information Systems 38283, University of Regensburg, Department of Economics.
- Eichler, Michael & Motta, Giovanni & von Sachs, Rainer, 2011.
"Fitting dynamic factor models to non-stationary time series,"
Journal of Econometrics, Elsevier, vol. 163(1), pages 51-70, July.
- Eichler, M. & Motta, G. & von Sachs, R., 2009. "Fitting dynamic factor models to non-stationary time series," Research Memorandum 002, Maastricht University, Maastricht Research School of Economics of Technology and Organization (METEOR).
- Yuefeng Han & Rong Chen & Dan Yang & Cun-Hui Zhang, 2020. "Tensor Factor Model Estimation by Iterative Projection," Papers 2006.02611, arXiv.org, revised Jul 2024.
- Fan, Jianqing & Han, Fang & Liu, Han & Vickers, Byron, 2016.
"Robust inference of risks of large portfolios,"
Journal of Econometrics, Elsevier, vol. 194(2), pages 298-308.
- Jianqing Fan & Fang Han & Han Liu & Byron Vickers, 2015. "Robust Inference of Risks of Large Portfolios," Papers 1501.02382, arXiv.org.
- Poncela, Pilar & Ruiz, Esther & Miranda, Karen, 2021.
"Factor extraction using Kalman filter and smoothing: This is not just another survey,"
International Journal of Forecasting, Elsevier, vol. 37(4), pages 1399-1425.
- Poncela Blanco, Maria Pilar, 2020. "Factor extraction using Kalman filter and smoothing: this is not just another survey," DES - Working Papers. Statistics and Econometrics. WS 30644, Universidad Carlos III de Madrid. Departamento de EstadÃstica.
- Jiang, Jiancheng & Jiang, Xuejun & Li, Jingzhi & Liu, Yi & Yan, Wanfeng, 2017. "Spatial quantile estimation of multivariate threshold time series models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 486(C), pages 772-781.
- Wu, Jianhong, 2016. "Robust determination for the number of common factors in the approximate factor models," Economics Letters, Elsevier, vol. 144(C), pages 102-106.
- Francisco Corona & Pilar Poncela & Esther Ruiz, 2020.
"Estimating Non-stationary Common Factors: Implications for Risk Sharing,"
Computational Economics, Springer;Society for Computational Economics, vol. 55(1), pages 37-60, January.
- Corona, Francisco & Poncela, Pilar, 2017. "Estimating non-stationary common factors : Implications for risk sharing," DES - Working Papers. Statistics and Econometrics. WS 24585, Universidad Carlos III de Madrid. Departamento de EstadÃstica.
- Alessi, Lucia & Barigozzi, Matteo & Capasso, Marco, 2010. "Improved penalization for determining the number of factors in approximate factor models," Statistics & Probability Letters, Elsevier, vol. 80(23-24), pages 1806-1813, December.
- Cees Diks & Bram Wouters, 2023. "Noise reduction for functional time series," Papers 2307.02154, arXiv.org.
- repec:cte:wsrepe:27047 is not listed on IDEAS
- Wang, Dong & Liu, Xialu & Chen, Rong, 2019. "Factor models for matrix-valued high-dimensional time series," Journal of Econometrics, Elsevier, vol. 208(1), pages 231-248.
- Gao, Zhaoxing & Tsay, Ruey S., 2021. "Modeling high-dimensional unit-root time series," International Journal of Forecasting, Elsevier, vol. 37(4), pages 1535-1555.
- Yuefeng Han & Dan Yang & Cun-Hui Zhang & Rong Chen, 2021. "CP Factor Model for Dynamic Tensors," Papers 2110.15517, arXiv.org, revised Apr 2024.
- Zhaoxing Gao & Ruey S. Tsay, 2020. "Modeling High-Dimensional Unit-Root Time Series," Papers 2005.03496, arXiv.org, revised Aug 2020.
- Fayed Alshammri & Jiazhu Pan, 2021. "Moving dynamic principal component analysis for non-stationary multivariate time series," Computational Statistics, Springer, vol. 36(3), pages 2247-2287, September.
- Lam, Clifford & Yao, Qiwei & Bathia, Neil, 2011. "Estimation of latent factors for high-dimensional time series," LSE Research Online Documents on Economics 31549, London School of Economics and Political Science, LSE Library.
- Yuefeng Han & Rong Chen & Cun-Hui Zhang, 2020. "Rank Determination in Tensor Factor Model," Papers 2011.07131, arXiv.org, revised May 2022.
- Xia, Qiang & Liang, Rubing & Wu, Jianhong, 2017. "Transformed contribution ratio test for the number of factors in static approximate factor models," Computational Statistics & Data Analysis, Elsevier, vol. 112(C), pages 235-241.
- Jiti Gao & Guangming Pan & Yanrong Yang, 2016. "CEstimation of Structural Breaks in Large Panels with Cross-Sectional Dependence," Monash Econometrics and Business Statistics Working Papers 12/16, Monash University, Department of Econometrics and Business Statistics.
- M. Pilar Muñoz & Cristina Corchero & F.-Javier Heredia, 2013. "Improving Electricity Market Price Forecasting with Factor Models for the Optimal Generation Bid," International Statistical Review, International Statistical Institute, vol. 81(2), pages 289-306, August.
- Zhaoxing Gao & Ruey S. Tsay, 2020. "A Two-Way Transformed Factor Model for Matrix-Variate Time Series," Papers 2011.09029, arXiv.org.
- Liu, Xialu & Chen, Rong, 2020. "Threshold factor models for high-dimensional time series," Journal of Econometrics, Elsevier, vol. 216(1), pages 53-70.
- Tao, Minjing & Wang, Yahzen & Yao, Qiwei & Zou, Jian, 2011. "Large volatility matrix inference via combining low-frequency and high-frequency approaches," LSE Research Online Documents on Economics 39321, London School of Economics and Political Science, LSE Library.
- Sundararajan, Raanju R., 2021. "Principal component analysis using frequency components of multivariate time series," Computational Statistics & Data Analysis, Elsevier, vol. 157(C).
- Chang, Jinyuan & Guo, Bin & Yao, Qiwei, 2015. "High dimensional stochastic regression with latent factors, endogeneity and nonlinearity," Journal of Econometrics, Elsevier, vol. 189(2), pages 297-312.
- Jiti Gao & Guangming Pan & Yanrong Yang & Bo Zhang, 2019. "An Integrated Panel Data Approach to Modelling Economic Growth," Monash Econometrics and Business Statistics Working Papers 9/19, Monash University, Department of Econometrics and Business Statistics.
- Lam, Clifford & Yao, Qiwei, 2012. "Factor modeling for high-dimensional time series: inference for the number of factors," LSE Research Online Documents on Economics 45684, London School of Economics and Political Science, LSE Library.
- Chen Tang & Yanlin Shi, 2021. "Forecasting High-Dimensional Financial Functional Time Series: An Application to Constituent Stocks in Dow Jones Index," JRFM, MDPI, vol. 14(8), pages 1-13, July.