IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v486y2017icp772-781.html
   My bibliography  Save this article

Spatial quantile estimation of multivariate threshold time series models

Author

Listed:
  • Jiang, Jiancheng
  • Jiang, Xuejun
  • Li, Jingzhi
  • Liu, Yi
  • Yan, Wanfeng

Abstract

In this paper we study spatial quantile regression estimation of multivariate threshold time series models. Bahadur’s representations for our estimators are established, which naturally lead to asymptotic normality of the estimators. Simulations and a real example are used to evaluate the performance of the proposed estimators.

Suggested Citation

  • Jiang, Jiancheng & Jiang, Xuejun & Li, Jingzhi & Liu, Yi & Yan, Wanfeng, 2017. "Spatial quantile estimation of multivariate threshold time series models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 486(C), pages 772-781.
  • Handle: RePEc:eee:phsmap:v:486:y:2017:i:c:p:772-781
    DOI: 10.1016/j.physa.2017.05.062
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437117305800
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2017.05.062?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jiazhu Pan & Qiwei Yao, 2008. "Modelling multiple time series via common factors," Biometrika, Biometrika Trust, vol. 95(2), pages 365-379.
    2. Pan, Jiazhu & Yao, Qiwei, 2008. "Modelling multiple time series via common factors," LSE Research Online Documents on Economics 22876, London School of Economics and Political Science, LSE Library.
    3. Jiancheng Jiang & Xuejun Jiang & Xinyuan Song, 2014. "Weighted composite quantile regression estimation of DTARCH models," Econometrics Journal, Royal Economic Society, vol. 17(1), pages 1-23, February.
    4. Bollerslev, Tim, 1990. "Modelling the Coherence in Short-run Nominal Exchange Rates: A Multivariate Generalized ARCH Model," The Review of Economics and Statistics, MIT Press, vol. 72(3), pages 498-505, August.
    5. Liang Peng, 2003. "Least absolute deviations estimation for ARCH and GARCH models," Biometrika, Biometrika Trust, vol. 90(4), pages 967-975, December.
    6. Peng, Liang & Yao, Qiwei, 2003. "Least absolute deviations estimation for ARCH and GARCH models," LSE Research Online Documents on Economics 5828, London School of Economics and Political Science, LSE Library.
    7. Yer Van Hui & Jiancheng Jiang, 2005. "Robust modelling of DTARCH models," Econometrics Journal, Royal Economic Society, vol. 8(2), pages 143-158, July.
    8. Jiang, Xuejun & Li, Jingzhi & Xia, Tian & Yan, Wanfeng, 2016. "Robust and efficient estimation with weighted composite quantile regression," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 457(C), pages 413-423.
    9. Jiang, Jiancheng & Zhao, Quanshui & Hui, Yer Van, 2001. "Robust Modelling of ARCH Models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 20(2), pages 111-133, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sun Kai & Wu Jin, 2022. "Semiconductor chip’s quality analysis based on its high dimensional test data," Annals of Operations Research, Springer, vol. 311(1), pages 183-194, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiang, Xuejun & Li, Jingzhi & Xia, Tian & Yan, Wanfeng, 2016. "Robust and efficient estimation with weighted composite quantile regression," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 457(C), pages 413-423.
    2. Farhat Iqbal, 2013. "Robust estimation of the simplified multivariate GARCH model," Empirical Economics, Springer, vol. 44(3), pages 1353-1372, June.
    3. Ahmad Zubaidi Baharumshah & Nor Aishah Hamzah & Shamsul Rijal Muhammad Sabri, 2011. "Inflation uncertainty and economic growth: evidence from the LAD ARCH model," Journal of Applied Statistics, Taylor & Francis Journals, vol. 38(1), pages 195-206.
    4. Jianqing Fan & Mingjin Wang & Qiwei Yao, 2008. "Modelling multivariate volatilities via conditionally uncorrelated components," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(4), pages 679-702, September.
    5. Yanlin Tang & Xinyuan Song & Zhongyi Zhu, 2015. "Variable selection via composite quantile regression with dependent errors," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 69(1), pages 1-20, February.
    6. Yuefeng Han & Rong Chen & Dan Yang & Cun-Hui Zhang, 2020. "Tensor Factor Model Estimation by Iterative Projection," Papers 2006.02611, arXiv.org, revised Jul 2024.
    7. M. Angeles Carnero & Daniel Peña & Esther Ruiz, 2008. "Estimating and Forecasting GARCH Volatility in the Presence of Outiers," Working Papers. Serie AD 2008-13, Instituto Valenciano de Investigaciones Económicas, S.A. (Ivie).
    8. Carlos Trucíos & João H. G. Mazzeu & Marc Hallin & Luiz K. Hotta & Pedro L. Valls Pereira & Mauricio Zevallos, 2022. "Forecasting Conditional Covariance Matrices in High-Dimensional Time Series: A General Dynamic Factor Approach," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 41(1), pages 40-52, December.
    9. M. Jiménez Gamero, 2014. "On the empirical characteristic function process of the residuals in GARCH models and applications," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(2), pages 409-432, June.
    10. Tobias Hartl & Roland Weigand, 2018. "Multivariate Fractional Components Analysis," Papers 1812.09149, arXiv.org, revised Jan 2019.
    11. Zhu, Ke & Ling, Shiqing, 2013. "Global self-weighted and local quasi-maximum exponential likelihood estimators for ARMA-GARCH/IGARCH models," MPRA Paper 51509, University Library of Munich, Germany.
    12. Lam, Clifford & Yao, Qiwei & Bathia, Neil, 2011. "Estimation of latent factors for high-dimensional time series," LSE Research Online Documents on Economics 31549, London School of Economics and Political Science, LSE Library.
    13. Hill, Jonathan B. & Prokhorov, Artem, 2016. "GEL estimation for heavy-tailed GARCH models with robust empirical likelihood inference," Journal of Econometrics, Elsevier, vol. 190(1), pages 18-45.
    14. Poncela, Pilar & Ruiz, Esther & Miranda, Karen, 2021. "Factor extraction using Kalman filter and smoothing: This is not just another survey," International Journal of Forecasting, Elsevier, vol. 37(4), pages 1399-1425.
    15. Eichler, Michael & Motta, Giovanni & von Sachs, Rainer, 2011. "Fitting dynamic factor models to non-stationary time series," Journal of Econometrics, Elsevier, vol. 163(1), pages 51-70, July.
    16. Mo Zhou & Liang Peng & Rongmao Zhang, 2021. "Empirical likelihood test for the application of swqmele in fitting an arma‐garch model," Journal of Time Series Analysis, Wiley Blackwell, vol. 42(2), pages 222-239, March.
    17. Dennis Kristensen, 2009. "On stationarity and ergodicity of the bilinear model with applications to GARCH models," Journal of Time Series Analysis, Wiley Blackwell, vol. 30(1), pages 125-144, January.
    18. Kong, Efang & Linton, Oliver & Xia, Yingcun, 2010. "Uniform Bahadur Representation For Local Polynomial Estimates Of M-Regression And Its Application To The Additive Model," Econometric Theory, Cambridge University Press, vol. 26(5), pages 1529-1564, October.
    19. Carnero M. Angeles & Pérez Ana, 2021. "Outliers and misleading leverage effect in asymmetric GARCH-type models," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 25(1), pages 1-19, February.
    20. Cees Diks & Bram Wouters, 2023. "Noise reduction for functional time series," Papers 2307.02154, arXiv.org.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:486:y:2017:i:c:p:772-781. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.