IDEAS home Printed from https://ideas.repec.org/p/ehl/lserod/31549.html
   My bibliography  Save this paper

Estimation of latent factors for high-dimensional time series

Author

Listed:
  • Lam, Clifford
  • Yao, Qiwei
  • Bathia, Neil

Abstract

This paper deals with the dimension reduction of high-dimensional time series based on common factors. In particular we allow the dimension of time series p to be as large as, or even larger than, the sample size n. The estimation of the factor loading matrix and the factor process itself is carried out via an eigenanalysis of a p £ p non-negative de¯nite matrix. We show that when all the factors are strong in the sense that the norm of each column in the factor loading matrix is of the order p1=2, the estimator of the factor loading matrix is weakly consistent in L2-norm with the convergence rate independent of p. This result exhibits clearly that the `curse' is canceled out by the `blessing' of dimensionality. We also establish the asymptotic properties of the estimation when factors are not strong. The proposed method together with their asymptotic properties are further illustrated in a simulation study. An application to an implied volatility data set, together with a trading strategy derived from the ¯tted factor model, is also reported.

Suggested Citation

  • Lam, Clifford & Yao, Qiwei & Bathia, Neil, 2011. "Estimation of latent factors for high-dimensional time series," LSE Research Online Documents on Economics 31549, London School of Economics and Political Science, LSE Library.
  • Handle: RePEc:ehl:lserod:31549
    as

    Download full text from publisher

    File URL: http://eprints.lse.ac.uk/31549/
    File Function: Open access version.
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Forni, Mario & Hallin, Marc & Lippi, Marco & Reichlin, Lucrezia, 2004. "The generalized dynamic factor model consistency and rates," Journal of Econometrics, Elsevier, vol. 119(2), pages 231-255, April.
    2. Jushan Bai & Serena Ng, 2002. "Determining the Number of Factors in Approximate Factor Models," Econometrica, Econometric Society, vol. 70(1), pages 191-221, January.
    3. Rama Cont & Jose da Fonseca, 2002. "Dynamics of implied volatility surfaces," Quantitative Finance, Taylor & Francis Journals, vol. 2(1), pages 45-60.
    4. Pan, Jiazhu & Yao, Qiwei, 2008. "Modelling multiple time series via common factors," LSE Research Online Documents on Economics 22876, London School of Economics and Political Science, LSE Library.
    5. Alexander Chudik & M. Hashem Pesaran & Elisa Tosetti, 2011. "Weak and strong cross‐section dependence and estimation of large panels," Econometrics Journal, Royal Economic Society, vol. 14(1), pages 45-90, February.
    6. Bai, Jushan & Ng, Serena, 2007. "Determining the Number of Primitive Shocks in Factor Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 25, pages 52-60, January.
    7. Forni, Mario & Hallin, Marc & Lippi, Marco & Reichlin, Lucrezia, 2005. "The Generalized Dynamic Factor Model: One-Sided Estimation and Forecasting," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 830-840, September.
    8. Mario Forni & Marc Hallin & Marco Lippi & Lucrezia Reichlin, 2000. "The Generalized Dynamic-Factor Model: Identification And Estimation," The Review of Economics and Statistics, MIT Press, vol. 82(4), pages 540-554, November.
    9. Johnstone, Iain M. & Lu, Arthur Yu, 2009. "On Consistency and Sparsity for Principal Components Analysis in High Dimensions," Journal of the American Statistical Association, American Statistical Association, vol. 104(486), pages 682-693.
    10. T. Anderson, 1963. "The use of factor analysis in the statistical analysis of multiple time series," Psychometrika, Springer;The Psychometric Society, vol. 28(1), pages 1-25, March.
    11. Hallin, Marc & Liska, Roman, 2007. "Determining the Number of Factors in the General Dynamic Factor Model," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 603-617, June.
    12. Jushan Bai, 2003. "Inferential Theory for Factor Models of Large Dimensions," Econometrica, Econometric Society, vol. 71(1), pages 135-171, January.
    13. Jiazhu Pan & Qiwei Yao, 2008. "Modelling multiple time series via common factors," Biometrika, Biometrika Trust, vol. 95(2), pages 365-379.
    14. Fengler, Matthias R. & Härdle, Wolfgang Karl & Mammen, Enno, 2005. "A dynamic semiparametric factor model for implied volatility string dynamics," SFB 649 Discussion Papers 2005-020, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lam, Clifford & Yao, Qiwei, 2012. "Factor modeling for high-dimensional time series: inference for the number of factors," LSE Research Online Documents on Economics 45684, London School of Economics and Political Science, LSE Library.
    2. Poncela, Pilar & Ruiz, Esther & Miranda, Karen, 2021. "Factor extraction using Kalman filter and smoothing: This is not just another survey," International Journal of Forecasting, Elsevier, vol. 37(4), pages 1399-1425.
    3. Yuefeng Han & Dan Yang & Cun-Hui Zhang & Rong Chen, 2021. "CP Factor Model for Dynamic Tensors," Papers 2110.15517, arXiv.org, revised Apr 2024.
    4. Eichler, Michael & Motta, Giovanni & von Sachs, Rainer, 2011. "Fitting dynamic factor models to non-stationary time series," Journal of Econometrics, Elsevier, vol. 163(1), pages 51-70, July.
    5. Jörg Breitung & In Choi, 2013. "Factor models," Chapters, in: Nigar Hashimzade & Michael A. Thornton (ed.), Handbook of Research Methods and Applications in Empirical Macroeconomics, chapter 11, pages 249-265, Edward Elgar Publishing.
      • In Choi & Jorg Breitung, 2011. "Factor models," Working Papers 1121, Nam Duck-Woo Economic Research Institute, Sogang University (Former Research Institute for Market Economy), revised Dec 2011.
    6. Yuefeng Han & Rong Chen & Dan Yang & Cun-Hui Zhang, 2020. "Tensor Factor Model Estimation by Iterative Projection," Papers 2006.02611, arXiv.org, revised Jul 2024.
    7. Mario Forni & Marc Hallin & Marco Lippi & Paolo Zaffaroni, 2011. "One-Sided Representations of Generalized Dynamic Factor Models," DSS Empirical Economics and Econometrics Working Papers Series 2011/5, Centre for Empirical Economics and Econometrics, Department of Statistics, "Sapienza" University of Rome.
    8. Matteo Luciani, 2015. "Monetary Policy and the Housing Market: A Structural Factor Analysis," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 30(2), pages 199-218, March.
    9. Karim Barhoumi & Olivier Darné & Laurent Ferrara, 2014. "Dynamic factor models: A review of the literature," OECD Journal: Journal of Business Cycle Measurement and Analysis, OECD Publishing, Centre for International Research on Economic Tendency Surveys, vol. 2013(2), pages 73-107.
    10. Jianqing Fan & Yuan Liao & Martina Mincheva, 2013. "Large covariance estimation by thresholding principal orthogonal complements," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 75(4), pages 603-680, September.
    11. Huang, Huichou & MacDonald, Ronald & Zhao, Yang, 2012. "Global Currency Misalignments, Crash Sensitivity, and Downside Insurance Costs," MPRA Paper 53745, University Library of Munich, Germany, revised 18 Nov 2013.
    12. Forni, Mario & Hallin, Marc & Lippi, Marco & Zaffaroni, Paolo, 2015. "Dynamic factor models with infinite-dimensional factor spaces: One-sided representations," Journal of Econometrics, Elsevier, vol. 185(2), pages 359-371.
    13. Lütkepohl, Helmut, 2014. "Structural vector autoregressive analysis in a data rich environment: A survey," SFB 649 Discussion Papers 2014-004, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    14. Heaton, Chris & Solo, Victor, 2012. "Estimation of high-dimensional linear factor models with grouped variables," Journal of Multivariate Analysis, Elsevier, vol. 105(1), pages 348-367.
    15. Yuefeng Han & Rong Chen & Cun-Hui Zhang, 2020. "Rank Determination in Tensor Factor Model," Papers 2011.07131, arXiv.org, revised May 2022.
    16. Chang, Jinyuan & Guo, Bin & Yao, Qiwei, 2015. "High dimensional stochastic regression with latent factors, endogeneity and nonlinearity," LSE Research Online Documents on Economics 61886, London School of Economics and Political Science, LSE Library.
    17. Catherine Doz & Peter Fuleky, 2019. "Dynamic Factor Models," Working Papers halshs-02262202, HAL.
    18. Forni, Mario & Hallin, Marc & Lippi, Marco & Zaffaroni, Paolo, 2017. "Dynamic factor models with infinite-dimensional factor space: Asymptotic analysis," Journal of Econometrics, Elsevier, vol. 199(1), pages 74-92.
    19. Stock, J.H. & Watson, M.W., 2016. "Dynamic Factor Models, Factor-Augmented Vector Autoregressions, and Structural Vector Autoregressions in Macroeconomics," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 415-525, Elsevier.
    20. Luciani, Matteo, 2014. "Forecasting with approximate dynamic factor models: The role of non-pervasive shocks," International Journal of Forecasting, Elsevier, vol. 30(1), pages 20-29.

    More about this item

    Keywords

    ISI; convergence in L2-norm; curse and blessing of dimensionality; dimension reduction; eigenanalysis; factor model;
    All these keywords.

    JEL classification:

    • C1 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ehl:lserod:31549. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: LSERO Manager (email available below). General contact details of provider: https://edirc.repec.org/data/lsepsuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.