My bibliography
Save this item
Adaptive Forcasting in the Presence of Recent and Ongoing Structural Change
Citations
Blog mentions
As found by EconAcademics.org, the blog aggregator for Economics research:- Forecasting GDP in the presence of breaks: when is the past is a good guide to the future?
by bankunderground in Bank Underground on 2015-08-20 11:30:00 - Forecasting GDP in the presence of breaks: when is the past a good guide to the future?
by Guest Author in The Big Picture on 2015-09-01 14:00:11
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Duncan, Roberto & Martínez-García, Enrique, 2019.
"New perspectives on forecasting inflation in emerging market economies: An empirical assessment,"
International Journal of Forecasting, Elsevier, vol. 35(3), pages 1008-1031.
- Roberto Duncan & Enrique Martínez García, 2018. "New Perspectives on Forecasting Inflation in Emerging Market Economies: An Empirical Assessment," Globalization Institute Working Papers 338, Federal Reserve Bank of Dallas.
- Y. Dendramis & G. Kapetanios & M. Marcellino, 2020.
"A similarity‐based approach for macroeconomic forecasting,"
Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(3), pages 801-827, June.
- Marcellino, Massimiliano & Kapetanios, George & Dendramis, Yiannis, 2020. "A Similarity-based Approach for Macroeconomic Forecasting," CEPR Discussion Papers 14469, C.E.P.R. Discussion Papers.
- Luca Nocciola, 2022.
"Finite Sample Forecast Properties and Window Length Under Breaks in Cointegrated Systems,"
Advances in Econometrics, in: Essays in Honor of M. Hashem Pesaran: Prediction and Macro Modeling, volume 43, pages 167-196,
Emerald Group Publishing Limited.
- Luca Nocciola, "undated". "Finite sample forecast properties and window length under breaks in cointegrated systems," Discussion Papers 19/07, University of Nottingham, Granger Centre for Time Series Econometrics.
- Barbara Rossi, 2019.
"Forecasting in the Presence of Instabilities: How Do We Know Whether Models Predict Well and How to Improve Them,"
Working Papers
1162, Barcelona School of Economics.
- Rossi, Barbara, 2020. "Forecasting in the Presence of Instabilities: How Do We Know Whether Models Predict Well and How to Improve Them," CEPR Discussion Papers 14472, C.E.P.R. Discussion Papers.
- Barbara Rossi, 2019. "Forecasting in the presence of instabilities: How do we know whether models predict well and how to improve them," Economics Working Papers 1711, Department of Economics and Business, Universitat Pompeu Fabra, revised Jul 2021.
- Hännikäinen Jari, 2017.
"Selection of an Estimation Window in the Presence of Data Revisions and Recent Structural Breaks,"
Journal of Econometric Methods, De Gruyter, vol. 6(1), pages 1-22, January.
- Hännikäinen, Jari, 2015. "Selection of an estimation window in the presence of data revisions and recent structural breaks," MPRA Paper 66759, University Library of Munich, Germany.
- Jari Hännikäinen, 2016. "Selection of an Estimation Window in the Presence of Data Revisions and Recent Structural Breaks," Working Papers 1692, Tampere University, Faculty of Management and Business, Economics.
- Fabio Busetti & Pietro Cova & Antonio Maria Conti & Filippo Scoccianti & Libero Monteforte & Giordano Zevi & Valentina Aprigliano & Andrea Gerali & Alberto Locarno & Alessandro Notarpietro & Massimili, 2014. "The effects of the crisis on production potential and household spending in Italy," Workshop and Conferences 18, Bank of Italy, Economic Research and International Relations Area.
- Philip Hans Franses & Eva Janssens, 2018. "This Time It Is Different! Or Not? Discounting Past Data When Predicting The Future," Annals of Financial Economics (AFE), World Scientific Publishing Co. Pte. Ltd., vol. 13(02), pages 1-34, June.
- Raffaella Giacomini & Barbara Rossi, 2015.
"Forecasting in Nonstationary Environments: What Works and What Doesn't in Reduced-Form and Structural Models,"
Annual Review of Economics, Annual Reviews, vol. 7(1), pages 207-229, August.
- Raffaella Giacomini & Barbara Rossi, 2014. "Forecasting in nonstationary environments: What works and what doesn't in reduced-form and structural models," Economics Working Papers 1476, Department of Economics and Business, Universitat Pompeu Fabra.
- Raffaella Giacomini & Barbara Rossi, 2014. "Forecasting in Nonstationary Environments: What Works and What Doesn't in Reduced-Form and Structural Models," Working Papers 819, Barcelona School of Economics.
- Petrova, Katerina, 2019. "A quasi-Bayesian local likelihood approach to time varying parameter VAR models," Journal of Econometrics, Elsevier, vol. 212(1), pages 286-306.
- Khowaja, Kainat & Saef, Danial & Sizov, Sergej & Härdle, Wolfgang Karl, 2020. "Data Analytics Driven Controlling: bridging statistical modeling and managerial intuition," IRTG 1792 Discussion Papers 2020-026, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
- Ana Beatriz Galvão & Liudas Giraitis & George Kapetanios & Katerina Petrova, 2015. "A Bayesian Local Likelihood Method for Modelling Parameter Time Variation in DSGE Models," Working Papers 770, Queen Mary University of London, School of Economics and Finance.
- Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022.
"Forecasting: theory and practice,"
International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
- Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
- Jana Eklund & George Kapetanios & Simon Price, 2013. "Robust Forecast Methods and Monitoring during Structural Change," Manchester School, University of Manchester, vol. 81, pages 3-27, October.
- George Kapetanios & Massimiliano Marcellino & Fabrizio Venditti, 2019.
"Large time‐varying parameter VARs: A nonparametric approach,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 34(7), pages 1027-1049, November.
- Marcellino, Massimiliano & Kapetanios, George & Venditti, Fabrizio, 2016. "Large Time-Varying Parameter VARs: A Non-Parametric Approach," CEPR Discussion Papers 11560, C.E.P.R. Discussion Papers.
- George Kapetanios & Massimiliano Marcellino & Fabrizio Venditti, 2017. "Large time-varying parameter VARs: a non-parametric approach," Temi di discussione (Economic working papers) 1122, Bank of Italy, Economic Research and International Relations Area.
- Andrew B. Martinez & Jennifer L. Castle & David F. Hendry, 2022.
"Smooth Robust Multi-Horizon Forecasts,"
Advances in Econometrics, in: Essays in Honor of M. Hashem Pesaran: Prediction and Macro Modeling, volume 43, pages 143-165,
Emerald Group Publishing Limited.
- Andrew B. Martinez & Jennifer L. Castle & David F. Hendry, 2020. "Smooth Robust Multi-Horizon Forecasts," Working Papers 2020-009, The George Washington University, Department of Economics, H. O. Stekler Research Program on Forecasting.
- Andrew B. Martinez & Jennifer L. Castle & David F. Hendry, 2021. "Smooth Robust Multi-Horizon Forecasts," Economics Papers 2021-W01, Economics Group, Nuffield College, University of Oxford.
- Groen, Jan J.J. & Kapetanios, George, 2016.
"Revisiting useful approaches to data-rich macroeconomic forecasting,"
Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 221-239.
- Jan J.J. Groen & George Kapetanios, 2008. "Revisiting Useful Approaches to Data-Rich Macroeconomic Forecasting," Working Papers 624, Queen Mary University of London, School of Economics and Finance.
- Jan J. J. Groen & George Kapetanios, 2008. "Revisiting useful approaches to data-rich macroeconomic forecasting," Staff Reports 327, Federal Reserve Bank of New York.
- Ana Beatriz Galvão & Liudas Giraitis & George Kapetanios & Katerina Petrova, 2015.
"A Bayesian Local Likelihood Method for Modelling Parameter Time Variation in DSGE Models,"
Working Papers
770, Queen Mary University of London, School of Economics and Finance.
- Ana Beatriz Galvão & Liudas Giraitis & George Kapetanios & Katerina Petrova, 2015. "A Bayesian Local Likelihood Method for Modelling Parameter Time Variation in DSGE Models," Working Papers 770, Queen Mary University of London, School of Economics and Finance.
- Dendramis, Y. & Tzavalis, E. & Varthalitis, P. & Athanasiou, E., 2020. "Predicting default risk under asymmetric binary link functions," International Journal of Forecasting, Elsevier, vol. 36(3), pages 1039-1056.
- Davide De Gaetano, 2018. "Forecast Combinations in the Presence of Structural Breaks: Evidence from U.S. Equity Markets," Mathematics, MDPI, vol. 6(3), pages 1-19, March.
- Kapetanios, George & Price, Simon & Young, Garry, 2018.
"A UK financial conditions index using targeted data reduction: Forecasting and structural identification,"
Econometrics and Statistics, Elsevier, vol. 7(C), pages 1-17.
- Kapetanios, G & Price, SG & Young, G, 2017. "A UK financial conditions index using targeted data reduction: forecasting and structural identification," Essex Finance Centre Working Papers 20328, University of Essex, Essex Business School.
- Kapetanios, George & Price, Simon & Young, Garry, 2017. "A UK financial conditions index using targeted data reduction: forecasting and structural identification," Bank of England working papers 699, Bank of England.
- George Kapetanios & Simon Price & Garry Young, 2017. "A UK financial conditions index using targeted data reduction: forecasting and structural identification," CAMA Working Papers 2017-58, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
- Mardi Dungey & Jan P.A.M. Jacobs & Jing Tian, 2017.
"Forecasting output gaps in the G-7 countries: the role of correlated innovations and structural breaks,"
Applied Economics, Taylor & Francis Journals, vol. 49(45), pages 4554-4566, September.
- Dungey, Mardi & Jacobs, Jan P.A.M. & Tian, Jing, 2016. "Forecasting output gaps in the G-7 countries: The role of correlated Innovations and structural breaks," Working Papers 2016-04, University of Tasmania, Tasmanian School of Business and Economics.
- Pablo Guerróon‐Quintana & Molin Zhong, 2023.
"Macroeconomic forecasting in times of crises,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 38(3), pages 295-320, April.
- Pablo Guerrón-Quintana & Molin Zhong, 2017. "Macroeconomic Forecasting in Times of Crises," Finance and Economics Discussion Series 2017-018, Board of Governors of the Federal Reserve System (U.S.).
- Rossi, Barbara & Inoue, Atsushi & Jin, Lu, 2014. "Window Selection for Out-of-Sample Forecasting with Time-Varying Parameters," CEPR Discussion Papers 10168, C.E.P.R. Discussion Papers.
- Davide De Gaetano, 2017. "Forecasting With Garch Models Under Structural Breaks: An Approach Based On Combinations Across Estimation Windows," Departmental Working Papers of Economics - University 'Roma Tre' 0219, Department of Economics - University Roma Tre.
- Knut Are Aastveit & Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2017.
"Have Standard VARS Remained Stable Since the Crisis?,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 32(5), pages 931-951, August.
- Knut Are Aastveit & Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2014. "Have standard VARs remained stable since the crisis?," Working Paper 2014/13, Norges Bank.
- Marcellino, Massimiliano & Aastveit, Knut Are & Carriero, Andrea & Clark, Todd, 2016. "Have Standard VARs Remained Stable Since the Crisis?," CEPR Discussion Papers 11558, C.E.P.R. Discussion Papers.
- Knut Are Aastveit & Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2014. "Have Standard VARs Remained Stable since the Crisis?," Working Papers (Old Series) 1411, Federal Reserve Bank of Cleveland.
- Kley, Tobias & Preuss, Philip & Fryzlewicz, Piotr, 2019. "Predictive, finite-sample model choice for time series under stationarity and non-stationarity," LSE Research Online Documents on Economics 101748, London School of Economics and Political Science, LSE Library.
- Yongchen Zhao, 2021.
"The robustness of forecast combination in unstable environments: a Monte Carlo study of advanced algorithms,"
Empirical Economics, Springer, vol. 61(1), pages 173-199, July.
- Yongchen Zhao, 2015. "Robustness of Forecast Combination in Unstable Environment: A Monte Carlo Study of Advanced Algorithms," Working Papers 2015-04, Towson University, Department of Economics, revised Mar 2020.
- Yongchen Zhao, 2015. "Robustness of Forecast Combination in Unstable Environment: A Monte Carlo Study of Advanced Algorithms," Working Papers 2015-005, The George Washington University, Department of Economics, H. O. Stekler Research Program on Forecasting.
- Inoue, Atsushi & Jin, Lu & Rossi, Barbara, 2017.
"Rolling window selection for out-of-sample forecasting with time-varying parameters,"
Journal of Econometrics, Elsevier, vol. 196(1), pages 55-67.
- Atsushi Inoue & Lu Jin & Barbara Rossi, 2014. "Rolling Window Selection for Out-of-Sample Forecasting with Time-Varying Parameters," Working Papers 768, Barcelona School of Economics.
- Atsushi Inoue & Lu Jin & Barbara Rossi, 2014. "Rolling window selection for out-of-sample forecasting with time-varying parameters," Economics Working Papers 1435, Department of Economics and Business, Universitat Pompeu Fabra, revised Apr 2016.
- Hirano, Keisuke & Wright, Jonathan H., 2022. "Analyzing cross-validation for forecasting with structural instability," Journal of Econometrics, Elsevier, vol. 226(1), pages 139-154.
- Wang, Yudong & Hao, Xianfeng & Wu, Chongfeng, 2021. "Forecasting stock returns: A time-dependent weighted least squares approach," Journal of Financial Markets, Elsevier, vol. 53(C).
- Atsushi Inoue, 2015. "Comment," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 33(1), pages 9-11, January.
- Marianna Riggi & Fabrizio Venditti, 2014. "Surprise! Euro area inflation has fallen," Questioni di Economia e Finanza (Occasional Papers) 237, Bank of Italy, Economic Research and International Relations Area.
- Papantonis Ioannis & Rompolis Leonidas S. & Tzavalis Elias & Agapitos Orestis, 2023. "Augmenting the Realized-GARCH: the role of signed-jumps, attenuation-biases and long-memory effects," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 27(2), pages 171-198, April.
- Stephen G. Hall & George S. Tavlas & Yongli Wang & Deborah Gefang, 2024. "Inflation forecasting with rolling windows: An appraisal," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(4), pages 827-851, July.
- Yousuf, Kashif & Ng, Serena, 2021.
"Boosting high dimensional predictive regressions with time varying parameters,"
Journal of Econometrics, Elsevier, vol. 224(1), pages 60-87.
- Kashif Yousuf & Serena Ng, 2019. "Boosting High Dimensional Predictive Regressions with Time Varying Parameters," Papers 1910.03109, arXiv.org.
- Giraitis, Liudas & Kapetanios, George & Theodoridis, Konstantinos & Yates, Tony, 2014.
"Estimating time-varying DSGE models using minimum distance methods,"
Bank of England working papers
507, Bank of England.
- Liudas Giraitis & George Kapetanios & Konstantinos Theodoridis & Tony Yates, 2015. "Estimating Time-Varying DSGE Models Using Minimum Distance Methods," Working Papers 768, Queen Mary University of London, School of Economics and Finance.
- Dendramis, Y. & Tzavalis, E. & Adraktas, G., 2018. "Credit risk modelling under recessionary and financially distressed conditions," Journal of Banking & Finance, Elsevier, vol. 91(C), pages 160-175.
- Franses, Ph.H.B.F. & Janssens, E., 2017. "This time it is different! Or not?," Econometric Institute Research Papers EI2017-25, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
- Andre Jungmittag, 2016.
"Combination of Forecasts across Estimation Windows: An Application to Air Travel Demand,"
Journal of Forecasting, John Wiley & Sons, Ltd., vol. 35(4), pages 373-380, July.
- Jungmittag, Andre, 2014. "Combination of forecasts across estimation windows: An application to air travel demand," Working Paper Series 05, Frankfurt University of Applied Sciences, Faculty of Business and Law.
- Giulia Bovini & Eliana Viviano, 2018. "The Italian "employment-rich" recovery: a closer look," Questioni di Economia e Finanza (Occasional Papers) 461, Bank of Italy, Economic Research and International Relations Area.
- Papantonis, Ioannis & Rompolis, Leonidas & Tzavalis, Elias, 2023. "Improving variance forecasts: The role of Realized Variance features," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1221-1237.
- Guido Bulligan & Eliana Viviano, 2017.
"Has the wage Phillips curve changed in the euro area?,"
IZA Journal of Labor Policy, Springer;Forschungsinstitut zur Zukunft der Arbeit GmbH (IZA), vol. 6(1), pages 1-22, December.
- Guido BUlligan & Eliana Viviano, 2016. "Has the wage Phillips curve changed in the euro area?," Questioni di Economia e Finanza (Occasional Papers) 355, Bank of Italy, Economic Research and International Relations Area.
- Mariia Artemova & Francisco Blasques & Siem Jan Koopman & Zhaokun Zhang, 2021. "Forecasting in a changing world: from the great recession to the COVID-19 pandemic," Tinbergen Institute Discussion Papers 21-006/III, Tinbergen Institute.
- Zhang, Xingmin & Zhang, Shuai, 2021. "Optimal time-varying tail risk network with a rolling window approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 580(C).
- Giraitis, Liudas & Kapetanios, George & Theodoridis, Konstantinos & Yates, Tony, 2014.
"Estimating time-varying DSGE models using minimum distance methods,"
Bank of England working papers
507, Bank of England.
- Liudas Giraitis & George Kapetanios & Konstantinos Theodoridis & Tony Yates, 2015. "Estimating Time-Varying DSGE Models Using Minimum Distance Methods," Working Papers 768, Queen Mary University of London, School of Economics and Finance.
- Liudas Giraitis & George Kapetanios & Konstantinos Theodoridis & Tony Yates, 2015. "Estimating Time-Varying DSGE Models Using Minimum Distance Methods," Working Papers 768, Queen Mary University of London, School of Economics and Finance.