IDEAS home Printed from https://ideas.repec.org/r/eee/transb/v128y2019icp129-157.html
   My bibliography  Save this item

Development of a non-parametric classifier: Effective identification, algorithm, and applications in port state control for maritime transportation

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Jose Manuel Prieto & Victor Amor & Ignacio Turias & David Almorza & Francisco Piniella, 2021. "Evaluation of Paris MoU Maritime Inspections Using a STATIS Approach," Mathematics, MDPI, vol. 9(17), pages 1-13, August.
  2. Liu, Kezhong & Yu, Qing & Yang, Zhisen & Wan, Chengpeng & Yang, Zaili, 2022. "BN-based port state control inspection for Paris MoU: New risk factors and probability training using big data," Reliability Engineering and System Safety, Elsevier, vol. 224(C).
  3. Jose Manuel Prieto & Víctor Amor-Esteban & David Almorza-Gomar & Ignacio Turias & Francisco Piniella, 2023. "Application of Multivariate Statistical Techniques as an Indicator of Variability of the Effects of COVID-19 on the Paris Memorandum of Understanding on Port State Control," Mathematics, MDPI, vol. 11(14), pages 1-22, July.
  4. Tian, Xuecheng & Yan, Ran & Liu, Yannick & Wang, Shuaian, 2023. "A smart predict-then-optimize method for targeted and cost-effective maritime transportation," Transportation Research Part B: Methodological, Elsevier, vol. 172(C), pages 32-52.
  5. Yan, Ran & Wang, Shuaian & Zhen, Lu, 2023. "An extended smart “predict, and optimize” (SPO) framework based on similar sets for ship inspection planning," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 173(C).
  6. Yan, Ran & Wang, Shuaian & Fagerholt, Kjetil, 2020. "A semi-“smart predict then optimize” (semi-SPO) method for efficient ship inspection," Transportation Research Part B: Methodological, Elsevier, vol. 142(C), pages 100-125.
  7. Yang, Zhisen & Yu, Qing & Yang, Zaili & Wan, Chengpeng, 2024. "A data-driven Bayesian model for evaluating the duration of detention of ships in PSC inspections," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 181(C).
  8. Yu, Qing & Teixeira, Ângelo Palos & Liu, Kezhong & Rong, Hao & Guedes Soares, Carlos, 2021. "An integrated dynamic ship risk model based on Bayesian Networks and Evidential Reasoning," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
  9. Yan, Ran & Liu, Yan & Wang, Shuaian, 2024. "A data-driven optimization approach to improving maritime transport efficiency," Transportation Research Part B: Methodological, Elsevier, vol. 180(C).
  10. Yan, Ran & Wang, Shuaian & Cao, Jiannong & Sun, Defeng, 2021. "Shipping Domain Knowledge Informed Prediction and Optimization in Port State Control," Transportation Research Part B: Methodological, Elsevier, vol. 149(C), pages 52-78.
  11. Yang, Zhisen & Wan, Chengpeng & Yu, Qing & Yin, Jingbo & Yang, Zaili, 2023. "A machine learning-based Bayesian model for predicting the duration of ship detention in PSC inspection," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 180(C).
  12. Wang, Yuhong & Zhang, Fan & Yang, Zhisen & Yang, Zaili, 2021. "Incorporation of deficiency data into the analysis of the dependency and interdependency among the risk factors influencing port state control inspection," Reliability Engineering and System Safety, Elsevier, vol. 206(C).
  13. Xuecheng Tian & Yanxia Guan & Shuaian Wang, 2023. "Data Transformation in the Predict-Then-Optimize Framework: Enhancing Decision Making under Uncertainty," Mathematics, MDPI, vol. 11(17), pages 1-12, September.
  14. Xuecheng Tian & Yanxia Guan & Shuaian Wang, 2023. "A Decision-Focused Learning Framework for Vessel Selection Problem," Mathematics, MDPI, vol. 11(16), pages 1-13, August.
  15. Yang, Zhisen & Wan, Chengpeng & Yang, Zaili & Yu, Qing, 2021. "Using Bayesian network-based TOPSIS to aid dynamic port state control detention risk control decision," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
  16. Wu, Bing & Tang, Yuheng & Yan, Xinping & Guedes Soares, Carlos, 2021. "Bayesian Network modelling for safety management of electric vehicles transported in RoPax ships," Reliability Engineering and System Safety, Elsevier, vol. 209(C).
  17. Wu, Lingxiao & Wang, Shuaian, 2020. "The shore power deployment problem for maritime transportation," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 135(C).
  18. Ziegler Haselein, Bruno & da Silva, Jonny Carlos & Hooey, Becky L., 2024. "Multiple machine learning modeling on near mid-air collisions: An approach towards probabilistic reasoning," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
  19. Zhou, Yusheng & Li, Xue & Yuen, Kum Fai, 2022. "Holistic risk assessment of container shipping service based on Bayesian Network Modelling," Reliability Engineering and System Safety, Elsevier, vol. 220(C).
  20. Xiao, Yi & Wang, Grace & Ge, Ying-En & Xu, Qinyi & Li, Kevin X., 2021. "Game model for a new inspection regime of port state control under different reward and punishment conditions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 156(C).
  21. Ran Yan & Wen Yi & Shuaian Wang, 2022. "Predicting Maximum Work Duration for Construction Workers," Sustainability, MDPI, vol. 14(17), pages 1-12, September.
  22. Wen Yi & Robyn Phipps & Hans Wang, 2020. "Sustainable Ship Loading Planning for Prefabricated Products in the Construction Industry," Sustainability, MDPI, vol. 12(21), pages 1-12, October.
  23. Xiao, Yi & Qi, Guanqiu & Jin, Mengjie & Yuen, Kum Fai & Chen, Zhuo & Li, Kevin X., 2021. "Efficiency of Port State Control inspection regimes: A comparative study," Transport Policy, Elsevier, vol. 106(C), pages 165-172.
  24. Li, Huanhuan & Ren, Xujie & Yang, Zaili, 2023. "Data-driven Bayesian network for risk analysis of global maritime accidents," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
  25. Bai, Xiwen & Cheng, Liangqi & Iris, Çağatay, 2022. "Data-driven financial and operational risk management: Empirical evidence from the global tramp shipping industry," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 158(C).
  26. Zhu, Jiang-Hong & Yang, Qiang & Jiang, Jun, 2023. "Identifying crucial deficiency categories influencing ship detention: A method of combining cloud model and prospect theory," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
  27. Xuecheng Tian & Shuaian Wang, 2022. "Cost-Sensitive Laplacian Logistic Regression for Ship Detention Prediction," Mathematics, MDPI, vol. 11(1), pages 1-15, December.
  28. Fan, Lixian & Zhang, Meng & Yin, Jingbo & Zhang, Jinfen, 2022. "Impacts of dynamic inspection records on port state control efficiency using Bayesian network analysis," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
  29. Yan, Ran & Mo, Haoyu & Guo, Xiaomeng & Yang, Ying & Wang, Shuaian, 2022. "Is port state control influenced by the COVID-19? Evidence from inspection data," Transport Policy, Elsevier, vol. 123(C), pages 82-103.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.