IDEAS home Printed from https://ideas.repec.org/a/eee/transe/v135y2020ics1366554518300218.html
   My bibliography  Save this article

The shore power deployment problem for maritime transportation

Author

Listed:
  • Wu, Lingxiao
  • Wang, Shuaian

Abstract

In this paper, we study a shore power deployment problem in a container shipping network. The aim of the problem is to develop a subsidy program for a government that achieves the utmost reduction of at-berth emissions from ships in the network. We formulate the problem as a mathematical model that captures the involved relationships among the government, container ports, and shipping lines. The model is hard to solve because it involves a multi-phase process that does not have a closed-form solution. To solve the problem, we develop a tailored labeling algorithm. Extensive numerical experiments are conducted, and the results demonstrate the applicability and efficiency of the solution method for solving practical instances. The results also demonstrate that the solutions delivered by our algorithm to the problem can significantly reduce the at-berth emissions from ships in the shipping network.

Suggested Citation

  • Wu, Lingxiao & Wang, Shuaian, 2020. "The shore power deployment problem for maritime transportation," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 135(C).
  • Handle: RePEc:eee:transe:v:135:y:2020:i:c:s1366554518300218
    DOI: 10.1016/j.tre.2020.101883
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1366554518300218
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tre.2020.101883?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Winkel, R. & Weddige, U. & Johnsen, D. & Hoen, V. & Papaefthimiou, S., 2016. "Shore Side Electricity in Europe: Potential and environmental benefits," Energy Policy, Elsevier, vol. 88(C), pages 584-593.
    2. Wang, Shuaian & Meng, Qiang, 2012. "Liner ship fleet deployment with container transshipment operations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 48(2), pages 470-484.
    3. Itf, 2019. "Maritime Subsidies: Do They Provide Value for Money?," International Transport Forum Policy Papers 70, OECD Publishing.
    4. Bierwirth, Christian & Meisel, Frank, 2015. "A follow-up survey of berth allocation and quay crane scheduling problems in container terminals," European Journal of Operational Research, Elsevier, vol. 244(3), pages 675-689.
    5. Du, Yuquan & Chen, Qiushuang & Quan, Xiongwen & Long, Lei & Fung, Richard Y.K., 2011. "Berth allocation considering fuel consumption and vessel emissions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 47(6), pages 1021-1037.
    6. Wang, Shuaian & Yan, Ran & Qu, Xiaobo, 2019. "Development of a non-parametric classifier: Effective identification, algorithm, and applications in port state control for maritime transportation," Transportation Research Part B: Methodological, Elsevier, vol. 128(C), pages 129-157.
    7. Dong, Jing-Xin & Song, Dong-Ping, 2009. "Container fleet sizing and empty repositioning in liner shipping systems," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 45(6), pages 860-877, November.
    8. Kim, Kap Hwan & Park, Young-Man, 2004. "A crane scheduling method for port container terminals," European Journal of Operational Research, Elsevier, vol. 156(3), pages 752-768, August.
    9. Ng, ManWo, 2017. "Revisiting a class of liner fleet deployment models," European Journal of Operational Research, Elsevier, vol. 257(3), pages 773-776.
    10. Song, Dong-Ping & Lyons, Andrew & Li, Dong & Sharifi, Hossein, 2016. "Modeling port competition from a transport chain perspective," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 87(C), pages 75-96.
    11. Qu, Xiaobo & Yu, Yang & Zhou, Mofan & Lin, Chin-Teng & Wang, Xiangyu, 2020. "Jointly dampening traffic oscillations and improving energy consumption with electric, connected and automated vehicles: A reinforcement learning based approach," Applied Energy, Elsevier, vol. 257(C).
    12. Ng, ManWo & Lin, Dung-Ying, 2018. "Fleet deployment in liner shipping with incomplete demand information," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 116(C), pages 184-189.
    13. Qu, Xiaobo & Meng, Qiang, 2012. "The economic importance of the Straits of Malacca and Singapore: An extreme-scenario analysis," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 48(1), pages 258-265.
    14. Zhang, Dong & Liu, Yang & He, Shuangchi, 2019. "Vehicle assignment and relays for one-way electric car-sharing systems," Transportation Research Part B: Methodological, Elsevier, vol. 120(C), pages 125-146.
    15. Meng, Qiang & Wang, Shuaian, 2012. "Liner ship fleet deployment with week-dependent container shipment demand," European Journal of Operational Research, Elsevier, vol. 222(2), pages 241-252.
    16. Wang, Shuaian & Meng, Qiang, 2012. "Sailing speed optimization for container ships in a liner shipping network," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 48(3), pages 701-714.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Merkel, Axel & Nyberg, Erik & Ek, Karin & Sjöstrand, Henrik, 2022. "Economics of shore power for non-liner shipping : socioeconomic appraisal under different access pricing," Working Papers 2022:6, Swedish National Road & Transport Research Institute (VTI).
    2. Yan, Ran & Wang, Shuaian & Psaraftis, Harilaos N., 2021. "Data analytics for fuel consumption management in maritime transportation: Status and perspectives," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 155(C).
    3. Zhen, Lu & Wang, Wencheng & Lin, Shumin, 2022. "Analytical comparison on two incentive policies for shore power equipped ships in berthing activities," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 161(C).
    4. Dan Zhuge & Shuaian Wang & Lu Zhen & Gilbert Laporte, 2021. "Subsidy design in a vessel speed reduction incentive program under government policies," Naval Research Logistics (NRL), John Wiley & Sons, vol. 68(3), pages 344-358, April.
    5. Abu Bakar, Nur Najihah & Bazmohammadi, Najmeh & Vasquez, Juan C. & Guerrero, Josep M., 2023. "Electrification of onshore power systems in maritime transportation towards decarbonization of ports: A review of the cold ironing technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 178(C).
    6. Yang He & Yun Zhu, 2023. "Comprehensive Benefit Analysis of Port Shore Power Based on Carbon Trading," Energies, MDPI, vol. 16(6), pages 1-19, March.
    7. Jingwen Qi & Hans Wang & Jianfeng Zheng, 2022. "Shore Power Deployment Problem—A Case Study of a Chinese Container Shipping Network," Sustainability, MDPI, vol. 14(11), pages 1-13, June.
    8. Hanyu Lu & Lufei Huang, 2021. "Optimization of Shore Power Deployment in Green Ports Considering Government Subsidies," Sustainability, MDPI, vol. 13(4), pages 1-14, February.
    9. Wang, Jinggai & Zhong, Meisu & Wang, Tianni & Ge, Ying-En, 2023. "Identifying industry-related opinions on shore power from a survey in China," Transport Policy, Elsevier, vol. 134(C), pages 65-81.
    10. Wang, Lifen & Liang, Chengji & Shi, Jian & Molavi, Anahita & Lim, Gino & Zhang, Yue, 2021. "A bilevel hybrid economic approach for optimal deployment of onshore power supply in maritime ports," Applied Energy, Elsevier, vol. 292(C).
    11. Wen Yi & Robyn Phipps & Hans Wang, 2020. "Sustainable Ship Loading Planning for Prefabricated Products in the Construction Industry," Sustainability, MDPI, vol. 12(21), pages 1-12, October.
    12. Merkel, Axel & Nyberg, Erik & Ek, Karin & Sjöstrand, Henrik, 2023. "Economics of shore power under different access pricing," Research in Transportation Economics, Elsevier, vol. 101(C).
    13. Jingwen Qi & Hans Wang & Jianfeng Zheng, 2022. "Promoting Liquefied Natural Gas (LNG) Bunkering for Maritime Transportation: Should Ports or Ships Be Subsidized?," Sustainability, MDPI, vol. 14(11), pages 1-16, May.
    14. Song, Zhuzhu & Tang, Wansheng & Zhao, Ruiqing & Zhang, Guoqing, 2022. "Implications of government subsidies on shipping companies’ shore power usage strategies in port," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 165(C).
    15. Xu, Haonan & Liu, Jiaguo & Xu, Xiaofeng & Chen, Jihong & Yue, Xiaohang, 2024. "The impact of AI technology adoption on operational decision-making in competitive heterogeneous ports☆," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 183(C).
    16. Wang, Shuaian & Qi, Jingwen & Laporte, Gilbert, 2022. "Governmental subsidy plan modeling and optimization for liquefied natural gas as fuel for maritime transportation," Transportation Research Part B: Methodological, Elsevier, vol. 155(C), pages 304-321.
    17. Chuanxu Wang & Lingli Wang, 2023. "Green investment and vertical alliances in the maritime supply chain," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(7), pages 6657-6687, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhen, Lu & Wu, Yiwei & Wang, Shuaian & Laporte, Gilbert, 2020. "Green technology adoption for fleet deployment in a shipping network," Transportation Research Part B: Methodological, Elsevier, vol. 139(C), pages 388-410.
    2. Wang, Hua & Wang, Shuaian & Meng, Qiang, 2014. "Simultaneous optimization of schedule coordination and cargo allocation for liner container shipping networks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 70(C), pages 261-273.
    3. Wang, Ying & Yeo, Gi-Tae & Ng, Adolf K.Y., 2014. "Choosing optimal bunkering ports for liner shipping companies: A hybrid Fuzzy-Delphi–TOPSIS approach," Transport Policy, Elsevier, vol. 35(C), pages 358-365.
    4. Chen, Kang & Chen, Dongxu & Sun, Xueshan & Yang, Zhongzhen, 2016. "Container Ocean-transportation System Design with the factors of demand fluctuation and choice inertia of shippers," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 95(C), pages 267-281.
    5. Wang, Shuaian, 2014. "A novel hybrid-link-based container routing model," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 61(C), pages 165-175.
    6. Lai, Xiaofan & Wu, Lingxiao & Wang, Kai & Wang, Fan, 2022. "Robust ship fleet deployment with shipping revenue management," Transportation Research Part B: Methodological, Elsevier, vol. 161(C), pages 169-196.
    7. Wang, Shuaian & Meng, Qiang, 2012. "Liner ship route schedule design with sea contingency time and port time uncertainty," Transportation Research Part B: Methodological, Elsevier, vol. 46(5), pages 615-633.
    8. Zhen, Lu & Shen, Tao & Wang, Shuaian & Yu, Shucheng, 2016. "Models on ship scheduling in transshipment hubs with considering bunker cost," International Journal of Production Economics, Elsevier, vol. 173(C), pages 111-121.
    9. Zheng, Jianfeng & Sun, Zhuo & Zhang, Fangjun, 2016. "Measuring the perceived container leasing prices in liner shipping network design with empty container repositioning," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 94(C), pages 123-140.
    10. Ng, ManWo & Lin, Dung-Ying, 2018. "Fleet deployment in liner shipping with incomplete demand information," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 116(C), pages 184-189.
    11. Alaa Abdelshafie & May Salah & Tomaž Kramberger & Dejan Dragan, 2022. "Repositioning and Optimal Re-Allocation of Empty Containers: A Review of Methods, Models, and Applications," Sustainability, MDPI, vol. 14(11), pages 1-23, May.
    12. Qiang Meng & Tingsong Wang & Shuaian Wang, 2015. "Multi-period liner ship fleet planning with dependent uncertain container shipment demand," Maritime Policy & Management, Taylor & Francis Journals, vol. 42(1), pages 43-67, January.
    13. Liu, Ming & Chu, Feng & Zhang, Zizhen & Chu, Chengbin, 2015. "A polynomial-time heuristic for the quay crane double-cycling problem with internal-reshuffling operations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 81(C), pages 52-74.
    14. Wang, Shuaian & Wang, Hua & Meng, Qiang, 2015. "Itinerary provision and pricing in container liner shipping revenue management," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 77(C), pages 135-146.
    15. Sun, Qinghe & Meng, Qiang & Chou, Mabel C., 2021. "Optimizing voyage charterparty (VCP) arrangement: Laytime negotiation and operations coordination," European Journal of Operational Research, Elsevier, vol. 291(1), pages 263-270.
    16. Wang, Yadong & Wang, Shuaian, 2021. "Deploying, scheduling, and sequencing heterogeneous vessels in a liner container shipping route," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 151(C).
    17. Yu, Ming-Miin & Chen, Li-Hsueh, 2016. "Centralized resource allocation with emission resistance in a two-stage production system: Evidence from a Taiwan’s container shipping company," Transportation Research Part A: Policy and Practice, Elsevier, vol. 94(C), pages 650-671.
    18. Wang, Yadong & Gu, Yuyun & Wang, Tingsong & Zhang, Jun, 2022. "A risk-averse approach for joint contract selection and slot allocation in liner container shipping," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 164(C).
    19. Wetzel, Daniel & Tierney, Kevin, 2020. "Integrating fleet deployment into liner shipping vessel repositioning," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 143(C).
    20. Li, Ling & Wang, Bin & Cook, David P., 2015. "Reprint of “Enhancing green supply chain initiatives via empty container reuse”," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 74(C), pages 109-123.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transe:v:135:y:2020:i:c:s1366554518300218. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600244/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.