IDEAS home Printed from https://ideas.repec.org/r/eee/spapps/v119y2009i4p1055-1080.html
   My bibliography  Save this item

Regularly varying multivariate time series

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Pedersen, Rasmus Søndergaard, 2016. "Targeting Estimation Of Ccc-Garch Models With Infinite Fourth Moments," Econometric Theory, Cambridge University Press, vol. 32(2), pages 498-531, April.
  2. Einmahl, John & Krajina, Andrea, 2023. "Empirical Likelihood Based Testing for Multivariate Regular Variation," Discussion Paper 2023-001, Tilburg University, Center for Economic Research.
  3. Bojan Basrak & Danijel Krizmanić, 2015. "A Multivariate Functional Limit Theorem in Weak $$M_{1}$$ M 1 Topology," Journal of Theoretical Probability, Springer, vol. 28(1), pages 119-136, March.
  4. Durieu, Olivier & Wang, Yizao, 2022. "Phase transition for extremes of a stochastic model with long-range dependence and multiplicative noise," Stochastic Processes and their Applications, Elsevier, vol. 143(C), pages 55-88.
  5. José G. Gómez-García & Christophe Chesneau, 2021. "A Dependent Lindeberg Central Limit Theorem for Cluster Functionals on Stationary Random Fields," Mathematics, MDPI, vol. 9(3), pages 1-14, January.
  6. Davis, Richard A. & Mikosch, Thomas & Zhao, Yuwei, 2013. "Measures of serial extremal dependence and their estimation," Stochastic Processes and their Applications, Elsevier, vol. 123(7), pages 2575-2602.
  7. Rasmus Pedersen & Olivier Wintenberger, 2017. "On the tail behavior of a class of multivariate conditionally heteroskedastic processes," Working Papers hal-01436267, HAL.
  8. Kokoszka, Piotr & Kulik, Rafał, 2023. "Principal component analysis of infinite variance functional data," Journal of Multivariate Analysis, Elsevier, vol. 193(C).
  9. Hashorva, Enkelejd, 2018. "Representations of max-stable processes via exponential tilting," Stochastic Processes and their Applications, Elsevier, vol. 128(9), pages 2952-2978.
  10. Wu, Lifan & Samorodnitsky, Gennady, 2020. "Regularly varying random fields," Stochastic Processes and their Applications, Elsevier, vol. 130(7), pages 4470-4492.
  11. Segers, Johan, 2019. "One- versus multi-component regular variation and extremes of Markov trees," LIDAM Discussion Papers ISBA 2019001, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
  12. Janssen, Anja & Segers, Johan, 2022. "Invariance properties of limiting point processes and applications to clusters of extremes," LIDAM Discussion Papers ISBA 2022020, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
  13. Krizmanić, Danijel, 2017. "Weak convergence of multivariate partial maxima processes," Journal of Multivariate Analysis, Elsevier, vol. 155(C), pages 1-11.
  14. Rootzén, Holger & Segers, Johan & Wadsworth, Jennifer L., 2018. "Multivariate generalized Pareto distributions: Parametrizations, representations, and properties," Journal of Multivariate Analysis, Elsevier, vol. 165(C), pages 117-131.
  15. Davis, Richard A. & Mikosch, Thomas & Cribben, Ivor, 2012. "Towards estimating extremal serial dependence via the bootstrapped extremogram," Journal of Econometrics, Elsevier, vol. 170(1), pages 142-152.
  16. Drees, Holger & Janßen, Anja & Neblung, Sebastian, 2021. "Cluster based inference for extremes of time series," Stochastic Processes and their Applications, Elsevier, vol. 142(C), pages 1-33.
  17. Davis, Richard & Drees, Holger & Segers, Johan & Warchol, Michal, 2018. "Inference on the tail process with application to financial time series modelling," LIDAM Discussion Papers ISBA 2018002, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
  18. Damek, Ewa & Mikosch, Thomas & Zhao, Yuwei & Zienkiewicz, Jacek, 2023. "Whittle estimation based on the extremal spectral density of a heavy-tailed random field," Stochastic Processes and their Applications, Elsevier, vol. 155(C), pages 232-267.
  19. Einmahl, John & Krajina, Andrea, 2023. "Empirical Likelihood Based Testing for Multivariate Regular Variation," Other publications TiSEM 261583f5-c571-48c6-8cea-9, Tilburg University, School of Economics and Management.
  20. Bücher, Axel & Jennessen, Tobias, 2022. "Statistical analysis for stationary time series at extreme levels: New estimators for the limiting cluster size distribution," Stochastic Processes and their Applications, Elsevier, vol. 149(C), pages 75-106.
  21. Kulik, Rafał & Soulier, Philippe & Wintenberger, Olivier, 2019. "The tail empirical process of regularly varying functions of geometrically ergodic Markov chains," Stochastic Processes and their Applications, Elsevier, vol. 129(11), pages 4209-4238.
  22. Rasmus Søndergaard Pedersen & Olivier Wintenberger, 2017. "On the tail behavior of a class of multivariate conditionally heteroskedastic processes," Post-Print hal-01436267, HAL.
  23. Janßen Anja & Segers Johan, 2024. "Invariance properties of limiting point processes and applications to clusters of extremes," Dependence Modeling, De Gruyter, vol. 12(1), pages 1-12, January.
  24. Sebastian Mentemeier & Olivier Wintenberger, 2022. "Asymptotic independence ex machina: Extreme value theory for the diagonal SRE model," Journal of Time Series Analysis, Wiley Blackwell, vol. 43(5), pages 750-780, September.
  25. Buriticá, Gloria & Mikosch, Thomas & Wintenberger, Olivier, 2023. "Large deviations of ℓp-blocks of regularly varying time series and applications to cluster inference," Stochastic Processes and their Applications, Elsevier, vol. 161(C), pages 68-101.
  26. Janßen, Anja, 2019. "Spectral tail processes and max-stable approximations of multivariate regularly varying time series," Stochastic Processes and their Applications, Elsevier, vol. 129(6), pages 1993-2009.
  27. Rootzen, Holger & Segers, Johan & Wadsworth, Jennifer, 2017. "Multivariate generalized Pareto distributions: parametrizations, representations, and properties," LIDAM Discussion Papers ISBA 2017016, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
  28. Zhang, Rong-Mao & Sin, Chor-yiu (CY) & Ling, Shiqing, 2015. "On functional limits of short- and long-memory linear processes with GARCH(1,1) noises," Stochastic Processes and their Applications, Elsevier, vol. 125(2), pages 482-512.
  29. Rafal Kulik & Philippe Soulier, 2013. "Heavy tailed time series with extremal independence," Papers 1307.1501, arXiv.org, revised Oct 2014.
  30. janssen, Anja & Segers, Johan, 2013. "Markov Tail Chains," LIDAM Discussion Papers ISBA 2013017, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
  31. Zhao, Zifeng & Zhang, Zhengjun & Chen, Rong, 2018. "Modeling maxima with autoregressive conditional Fréchet model," Journal of Econometrics, Elsevier, vol. 207(2), pages 325-351.
  32. Davis, Richard & Holger, Drees & Segers, Johan & Warchol, Michal, 2016. "Modeling serial extremal dependence," LIDAM Discussion Papers ISBA 2016016, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
  33. Segers, Johan, 2012. "Max-Stable Models For Multivariate Extremes," LIDAM Discussion Papers ISBA 2012011, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
  34. Li, Zenghu & Ma, Chunhua, 2015. "Asymptotic properties of estimators in a stable Cox–Ingersoll–Ross model," Stochastic Processes and their Applications, Elsevier, vol. 125(8), pages 3196-3233.
  35. Barczy, Mátyás & Basrak, Bojan & Kevei, Péter & Pap, Gyula & Planinić, Hrvoje, 2021. "Statistical inference of subcritical strongly stationary Galton–Watson processes with regularly varying immigration," Stochastic Processes and their Applications, Elsevier, vol. 132(C), pages 33-75.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.