IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v132y2021icp33-75.html
   My bibliography  Save this article

Statistical inference of subcritical strongly stationary Galton–Watson processes with regularly varying immigration

Author

Listed:
  • Barczy, Mátyás
  • Basrak, Bojan
  • Kevei, Péter
  • Pap, Gyula
  • Planinić, Hrvoje

Abstract

We describe the asymptotic behavior of the conditional least squares estimator of the offspring mean for subcritical strongly stationary Galton–Watson processes with regularly varying immigration with tail index α∈(1,2). The limit law is the ratio of two dependent stable random variables with indices α∕2 and 2α∕3, respectively, and it has a continuously differentiable density function. We use point process technique in the proofs.

Suggested Citation

  • Barczy, Mátyás & Basrak, Bojan & Kevei, Péter & Pap, Gyula & Planinić, Hrvoje, 2021. "Statistical inference of subcritical strongly stationary Galton–Watson processes with regularly varying immigration," Stochastic Processes and their Applications, Elsevier, vol. 132(C), pages 33-75.
  • Handle: RePEc:eee:spapps:v:132:y:2021:i:c:p:33-75
    DOI: 10.1016/j.spa.2020.10.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030441492030394X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spa.2020.10.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Basrak, Bojan & Planinić, Hrvoje, 2019. "A note on vague convergence of measures," Statistics & Probability Letters, Elsevier, vol. 153(C), pages 180-186.
    2. Li, Zenghu & Ma, Chunhua, 2015. "Asymptotic properties of estimators in a stable Cox–Ingersoll–Ross model," Stochastic Processes and their Applications, Elsevier, vol. 125(8), pages 3196-3233.
    3. Basrak, Bojan & Segers, Johan, 2009. "Regularly varying multivariate time series," Stochastic Processes and their Applications, Elsevier, vol. 119(4), pages 1055-1080, April.
    4. Davis, Richard & Resnick, Sidney, 1985. "More limit theory for the sample correlation function of moving averages," Stochastic Processes and their Applications, Elsevier, vol. 20(2), pages 257-279, September.
    5. Hu, Yaozhong & Long, Hongwei, 2009. "Least squares estimator for Ornstein-Uhlenbeck processes driven by [alpha]-stable motions," Stochastic Processes and their Applications, Elsevier, vol. 119(8), pages 2465-2480, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shen, Leyi & Xia, Xiaoyu & Yan, Litan, 2022. "Least squares estimation for the linear self-repelling diffusion driven by α-stable motions," Statistics & Probability Letters, Elsevier, vol. 181(C).
    2. Long, Hongwei & Ma, Chunhua & Shimizu, Yasutaka, 2017. "Least squares estimators for stochastic differential equations driven by small Lévy noises," Stochastic Processes and their Applications, Elsevier, vol. 127(5), pages 1475-1495.
    3. Fabian Mies & Ansgar Steland, 2019. "Nonparametric Gaussian inference for stable processes," Statistical Inference for Stochastic Processes, Springer, vol. 22(3), pages 525-555, October.
    4. Pedersen, Rasmus Søndergaard, 2016. "Targeting Estimation Of Ccc-Garch Models With Infinite Fourth Moments," Econometric Theory, Cambridge University Press, vol. 32(2), pages 498-531, April.
    5. Jonathan B. Hill, 2004. "Strong Orthogonal Decompositions and Non-Linear Impulse Response Functions for Infinite Variance Processes," Econometrics 0401001, University Library of Munich, Germany, revised 16 Dec 2005.
    6. Davis, Richard A. & Mikosch, Thomas & Cribben, Ivor, 2012. "Towards estimating extremal serial dependence via the bootstrapped extremogram," Journal of Econometrics, Elsevier, vol. 170(1), pages 142-152.
    7. Rafal Kulik & Philippe Soulier, 2013. "Heavy tailed time series with extremal independence," Papers 1307.1501, arXiv.org, revised Oct 2014.
    8. Zhao, Zifeng & Zhang, Zhengjun & Chen, Rong, 2018. "Modeling maxima with autoregressive conditional Fréchet model," Journal of Econometrics, Elsevier, vol. 207(2), pages 325-351.
    9. Janßen, Anja, 2019. "Spectral tail processes and max-stable approximations of multivariate regularly varying time series," Stochastic Processes and their Applications, Elsevier, vol. 129(6), pages 1993-2009.
    10. Basrak, Bojan & Davis, Richard A. & Mikosch, Thomas, 1999. "The sample ACF of a simple bilinear process," Stochastic Processes and their Applications, Elsevier, vol. 83(1), pages 1-14, September.
    11. Ren, Panpan & Wu, Jiang-Lun, 2021. "Least squares estimation for path-distribution dependent stochastic differential equations," Applied Mathematics and Computation, Elsevier, vol. 410(C).
    12. Mátyás Barczy & Kristóf Körmendi & Gyula Pap, 2016. "Statistical inference for critical continuous state and continuous time branching processes with immigration," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 79(7), pages 789-816, October.
    13. Guangjun Shen & Qian Yu, 2019. "Least squares estimator for Ornstein–Uhlenbeck processes driven by fractional Lévy processes from discrete observations," Statistical Papers, Springer, vol. 60(6), pages 2253-2271, December.
    14. Zhao, Huiyan & Zhang, Chongqi, 2019. "Minimum distance parameter estimation for SDEs with small α-stable noises," Statistics & Probability Letters, Elsevier, vol. 145(C), pages 301-311.
    15. Hui He & Zenghu Li & Wei Xu, 2018. "Continuous-State Branching Processes in Lévy Random Environments," Journal of Theoretical Probability, Springer, vol. 31(4), pages 1952-1974, December.
    16. Wang, Xiaolong & Feng, Jing & Liu, Qi & Li, Yongge & Xu, Yong, 2022. "Neural network-based parameter estimation of stochastic differential equations driven by Lévy noise," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 606(C).
    17. Yuya Sasaki & Yulong Wang, 2020. "Testing Finite Moment Conditions for the Consistency and the Root-N Asymptotic Normality of the GMM and M Estimators," Papers 2006.02541, arXiv.org, revised Sep 2020.
    18. Sai-Hua Huang & Tian-Xiao Pang & Chengguo Weng, 2014. "Limit Theory for Moderate Deviations from a Unit Root Under Innovations with a Possibly Infinite Variance," Methodology and Computing in Applied Probability, Springer, vol. 16(1), pages 187-206, March.
    19. Yurong Pan & Litan Yan, 2019. "The Least Squares Estimation for the α-Stable Ornstein-Uhlenbeck Process with Constant Drift," Methodology and Computing in Applied Probability, Springer, vol. 21(4), pages 1165-1182, December.
    20. Yiying Cheng & Yaozhong Hu & Hongwei Long, 2020. "Generalized moment estimators for $$\alpha $$α-stable Ornstein–Uhlenbeck motions from discrete observations," Statistical Inference for Stochastic Processes, Springer, vol. 23(1), pages 53-81, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:132:y:2021:i:c:p:33-75. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.