IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v142y2021icp1-33.html
   My bibliography  Save this article

Cluster based inference for extremes of time series

Author

Listed:
  • Drees, Holger
  • Janßen, Anja
  • Neblung, Sebastian

Abstract

We introduce a new type of estimator for the spectral tail process of a regularly varying time series. The approach is based on a characterizing invariance property of the spectral tail process, which is incorporated into the new estimator via a projection technique. We show uniform asymptotic normality of this estimator, both in the case of known and of unknown index of regular variation. In a simulation study the new procedure shows a more stable performance than previously proposed estimators.

Suggested Citation

  • Drees, Holger & Janßen, Anja & Neblung, Sebastian, 2021. "Cluster based inference for extremes of time series," Stochastic Processes and their Applications, Elsevier, vol. 142(C), pages 1-33.
  • Handle: RePEc:eee:spapps:v:142:y:2021:i:c:p:1-33
    DOI: 10.1016/j.spa.2021.07.012
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304414921001241
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spa.2021.07.012?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Janssens, Anja & Segers, Johan, 2015. "Markov tail chains," LIDAM Reprints ISBA 2015010, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    2. Basrak, Bojan & Davis, Richard A. & Mikosch, Thomas, 2002. "Regular variation of GARCH processes," Stochastic Processes and their Applications, Elsevier, vol. 99(1), pages 95-115, May.
    3. Kulik, Rafał & Soulier, Philippe & Wintenberger, Olivier, 2019. "The tail empirical process of regularly varying functions of geometrically ergodic Markov chains," Stochastic Processes and their Applications, Elsevier, vol. 129(11), pages 4209-4238.
    4. Drees, Holger & Segers, Johan & Warchol, Michal, 2015. "Statistics for Tail Processes of Markov Chains," LIDAM Reprints ISBA 2015023, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    5. Davis, Richard A. & Drees, Holger & Segers, Johan & WarchoÅ‚, MichaÅ‚, 2018. "Inference on the tail process with application to financial time series modelling," LIDAM Reprints ISBA 2018022, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    6. Basrak, Bojan & Segers, Johan, 2009. "Regularly varying multivariate time series," Stochastic Processes and their Applications, Elsevier, vol. 119(4), pages 1055-1080, April.
    7. Davis, Richard A. & Drees, Holger & Segers, Johan & Warchoł, Michał, 2018. "Inference on the tail process with application to financial time series modeling," Journal of Econometrics, Elsevier, vol. 205(2), pages 508-525.
    8. Eberlein, Ernst, 1984. "Weak convergence of partial sums of absolutely regular sequences," Statistics & Probability Letters, Elsevier, vol. 2(5), pages 291-293, October.
    9. Davis, Richard & Drees, Holger & Segers, Johan & Warchol, Michal, 2018. "Inference on the tail process with application to financial time series modelling," LIDAM Discussion Papers ISBA 2018002, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gloria Buriticá & Philippe Naveau, 2023. "Stable sums to infer high return levels of multivariate rainfall time series," Environmetrics, John Wiley & Sons, Ltd., vol. 34(4), June.
    2. Buriticá, Gloria & Mikosch, Thomas & Wintenberger, Olivier, 2023. "Large deviations of ℓp-blocks of regularly varying time series and applications to cluster inference," Stochastic Processes and their Applications, Elsevier, vol. 161(C), pages 68-101.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bücher, Axel & Jennessen, Tobias, 2022. "Statistical analysis for stationary time series at extreme levels: New estimators for the limiting cluster size distribution," Stochastic Processes and their Applications, Elsevier, vol. 149(C), pages 75-106.
    2. Buriticá, Gloria & Mikosch, Thomas & Wintenberger, Olivier, 2023. "Large deviations of ℓp-blocks of regularly varying time series and applications to cluster inference," Stochastic Processes and their Applications, Elsevier, vol. 161(C), pages 68-101.
    3. Damek, Ewa & Mikosch, Thomas & Zhao, Yuwei & Zienkiewicz, Jacek, 2023. "Whittle estimation based on the extremal spectral density of a heavy-tailed random field," Stochastic Processes and their Applications, Elsevier, vol. 155(C), pages 232-267.
    4. Davis, Richard & Drees, Holger & Segers, Johan & Warchol, Michal, 2018. "Inference on the tail process with application to financial time series modelling," LIDAM Discussion Papers ISBA 2018002, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    5. Zhao, Zifeng & Zhang, Zhengjun & Chen, Rong, 2018. "Modeling maxima with autoregressive conditional Fréchet model," Journal of Econometrics, Elsevier, vol. 207(2), pages 325-351.
    6. Davis, Richard & Holger, Drees & Segers, Johan & Warchol, Michal, 2016. "Modeling serial extremal dependence," LIDAM Discussion Papers ISBA 2016016, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    7. Gloria Buriticá & Philippe Naveau, 2023. "Stable sums to infer high return levels of multivariate rainfall time series," Environmetrics, John Wiley & Sons, Ltd., vol. 34(4), June.
    8. Pedro Henrique Melo Albuquerque & Yaohao Peng & João Pedro Fontoura da Silva, 2022. "Making the whole greater than the sum of its parts: A literature review of ensemble methods for financial time series forecasting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(8), pages 1701-1724, December.
    9. Durieu, Olivier & Wang, Yizao, 2022. "Phase transition for extremes of a stochastic model with long-range dependence and multiplicative noise," Stochastic Processes and their Applications, Elsevier, vol. 143(C), pages 55-88.
    10. Janßen, Anja, 2019. "Spectral tail processes and max-stable approximations of multivariate regularly varying time series," Stochastic Processes and their Applications, Elsevier, vol. 129(6), pages 1993-2009.
    11. Segers, Johan & Zhao, Yuwei & Meinguet, Thomas, 2016. "Radial-angular decomposition of regularly varying time series in star-shaped metric spaces," LIDAM Discussion Papers ISBA 2016017, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    12. Bojan Basrak & Danijel Krizmanić, 2015. "A Multivariate Functional Limit Theorem in Weak $$M_{1}$$ M 1 Topology," Journal of Theoretical Probability, Springer, vol. 28(1), pages 119-136, March.
    13. Davis, Richard A. & Mikosch, Thomas & Zhao, Yuwei, 2013. "Measures of serial extremal dependence and their estimation," Stochastic Processes and their Applications, Elsevier, vol. 123(7), pages 2575-2602.
    14. Krizmanić, Danijel, 2017. "Weak convergence of multivariate partial maxima processes," Journal of Multivariate Analysis, Elsevier, vol. 155(C), pages 1-11.
    15. Rasmus Pedersen & Olivier Wintenberger, 2017. "On the tail behavior of a class of multivariate conditionally heteroskedastic processes," Papers 1701.05091, arXiv.org, revised Dec 2017.
    16. janssen, Anja & Segers, Johan, 2013. "Markov Tail Chains," LIDAM Discussion Papers ISBA 2013017, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    17. Zhang, Rong-Mao & Sin, Chor-yiu (CY) & Ling, Shiqing, 2015. "On functional limits of short- and long-memory linear processes with GARCH(1,1) noises," Stochastic Processes and their Applications, Elsevier, vol. 125(2), pages 482-512.
    18. Victor Chernozhukov & Denis Chetverikov & Kengo Kato, 2013. "Testing Many Moment Inequalities," CeMMAP working papers 65/13, Institute for Fiscal Studies.
    19. Pedersen, Rasmus Søndergaard, 2016. "Targeting Estimation Of Ccc-Garch Models With Infinite Fourth Moments," Econometric Theory, Cambridge University Press, vol. 32(2), pages 498-531, April.
    20. Mika Meitz & Pentti Saikkonen, 2008. "Stability of nonlinear AR‐GARCH models," Journal of Time Series Analysis, Wiley Blackwell, vol. 29(3), pages 453-475, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:142:y:2021:i:c:p:1-33. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.