IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v155y2017icp1-11.html
   My bibliography  Save this article

Weak convergence of multivariate partial maxima processes

Author

Listed:
  • Krizmanić, Danijel

Abstract

For a strictly stationary sequence of R+d–valued random vectors we derive functional convergence of partial maxima stochastic processes under joint regular variation and weak dependence conditions. The limit process is an extremal process and the convergence takes place in the space of R+d–valued càdlàg functions on [0,1], with the Skorohod weak M1 topology. We also show that this topology in general cannot be replaced by the stronger (standard) M1 topology. The theory is illustrated on three examples, including the multivariate squared GARCH process with constant conditional correlations.

Suggested Citation

  • Krizmanić, Danijel, 2017. "Weak convergence of multivariate partial maxima processes," Journal of Multivariate Analysis, Elsevier, vol. 155(C), pages 1-11.
  • Handle: RePEc:eee:jmvana:v:155:y:2017:i:c:p:1-11
    DOI: 10.1016/j.jmva.2016.11.012
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047259X16301889
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jmva.2016.11.012?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Basrak, Bojan & Davis, Richard A. & Mikosch, Thomas, 2002. "Regular variation of GARCH processes," Stochastic Processes and their Applications, Elsevier, vol. 99(1), pages 95-115, May.
    2. Fernández, Begoña & Muriel, Nelson, 2009. "Regular variation and related results for the multivariate GARCH(p,q) model with constant conditional correlations," Journal of Multivariate Analysis, Elsevier, vol. 100(7), pages 1538-1550, August.
    3. Basrak, Bojan & Segers, Johan, 2009. "Regularly varying multivariate time series," Stochastic Processes and their Applications, Elsevier, vol. 119(4), pages 1055-1080, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pedersen, Rasmus Søndergaard, 2016. "Targeting Estimation Of Ccc-Garch Models With Infinite Fourth Moments," Econometric Theory, Cambridge University Press, vol. 32(2), pages 498-531, April.
    2. Janßen, Anja, 2019. "Spectral tail processes and max-stable approximations of multivariate regularly varying time series," Stochastic Processes and their Applications, Elsevier, vol. 129(6), pages 1993-2009.
    3. Bojan Basrak & Danijel Krizmanić, 2015. "A Multivariate Functional Limit Theorem in Weak $$M_{1}$$ M 1 Topology," Journal of Theoretical Probability, Springer, vol. 28(1), pages 119-136, March.
    4. Drees, Holger & Janßen, Anja & Neblung, Sebastian, 2021. "Cluster based inference for extremes of time series," Stochastic Processes and their Applications, Elsevier, vol. 142(C), pages 1-33.
    5. Davis, Richard A. & Mikosch, Thomas & Zhao, Yuwei, 2013. "Measures of serial extremal dependence and their estimation," Stochastic Processes and their Applications, Elsevier, vol. 123(7), pages 2575-2602.
    6. janssen, Anja & Segers, Johan, 2013. "Markov Tail Chains," LIDAM Discussion Papers ISBA 2013017, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    7. Durieu, Olivier & Wang, Yizao, 2022. "Phase transition for extremes of a stochastic model with long-range dependence and multiplicative noise," Stochastic Processes and their Applications, Elsevier, vol. 143(C), pages 55-88.
    8. Zhang, Rong-Mao & Sin, Chor-yiu (CY) & Ling, Shiqing, 2015. "On functional limits of short- and long-memory linear processes with GARCH(1,1) noises," Stochastic Processes and their Applications, Elsevier, vol. 125(2), pages 482-512.
    9. Mika Meitz & Pentti Saikkonen, 2008. "Stability of nonlinear AR‐GARCH models," Journal of Time Series Analysis, Wiley Blackwell, vol. 29(3), pages 453-475, May.
    10. Ding, Jing & Jiang, Lei & Liu, Xiaohui & Peng, Liang, 2023. "Nonparametric tests for market timing ability using daily mutual fund returns," Journal of Economic Dynamics and Control, Elsevier, vol. 150(C).
    11. Chen, Zhimin & Ibragimov, Rustam, 2019. "One country, two systems? The heavy-tailedness of Chinese A- and H- share markets," Emerging Markets Review, Elsevier, vol. 38(C), pages 115-141.
    12. Francq, Christian & Zakoian, Jean-Michel, 2024. "Finite moments testing in a general class of nonlinear time series models," MPRA Paper 121193, University Library of Munich, Germany.
    13. Davis, Richard A. & Mikosch, Thomas & Cribben, Ivor, 2012. "Towards estimating extremal serial dependence via the bootstrapped extremogram," Journal of Econometrics, Elsevier, vol. 170(1), pages 142-152.
    14. Rafal Kulik & Philippe Soulier, 2013. "Heavy tailed time series with extremal independence," Papers 1307.1501, arXiv.org, revised Oct 2014.
    15. Aknouche, Abdelhakim & Demmouche, Nacer & Touche, Nassim, 2018. "Bayesian MCMC analysis of periodic asymmetric power GARCH models," MPRA Paper 91136, University Library of Munich, Germany.
    16. Zhao, Zifeng & Zhang, Zhengjun & Chen, Rong, 2018. "Modeling maxima with autoregressive conditional Fréchet model," Journal of Econometrics, Elsevier, vol. 207(2), pages 325-351.
    17. Phornchanok Cumperayot & Casper G. de Vries, 2006. "Large Swings in Currencies driven by Fundamentals," Tinbergen Institute Discussion Papers 06-086/2, Tinbergen Institute.
    18. Bee, Marco & Dupuis, Debbie J. & Trapin, Luca, 2016. "Realizing the extremes: Estimation of tail-risk measures from a high-frequency perspective," Journal of Empirical Finance, Elsevier, vol. 36(C), pages 86-99.
    19. Qing Yang & Yu-Ning Li & Yi Zhang, 2020. "Change point detection for nonparametric regression under strongly mixing process," Statistical Papers, Springer, vol. 61(4), pages 1465-1506, August.
    20. Zhu, Ke & Ling, Shiqing, 2013. "Global self-weighted and local quasi-maximum exponential likelihood estimators for ARMA-GARCH/IGARCH models," MPRA Paper 51509, University Library of Munich, Germany.

    More about this item

    Keywords

    Functional limit theorem; Regular variation; Weak M1 topology; Extremal process; Weak convergence; Multivariate GARCH;
    All these keywords.

    JEL classification:

    • M1 - Business Administration and Business Economics; Marketing; Accounting; Personnel Economics - - Business Administration

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:155:y:2017:i:c:p:1-11. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.