IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v130y2020i7p4470-4492.html
   My bibliography  Save this article

Regularly varying random fields

Author

Listed:
  • Wu, Lifan
  • Samorodnitsky, Gennady

Abstract

We study the extremes of multivariate regularly varying random fields. The crucial tools in our study are the tail field and the spectral field, notions that extend the tail and spectral processes of Basrak and Segers (2009). The spatial context requires multiple notions of extremal index, and the tail and spectral fields are applied to clarify these notions and other aspects of extremal clusters. An important application of the techniques we develop is to the Brown–Resnick random fields.

Suggested Citation

  • Wu, Lifan & Samorodnitsky, Gennady, 2020. "Regularly varying random fields," Stochastic Processes and their Applications, Elsevier, vol. 130(7), pages 4470-4492.
  • Handle: RePEc:eee:spapps:v:130:y:2020:i:7:p:4470-4492
    DOI: 10.1016/j.spa.2020.01.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030441491830468X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spa.2020.01.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Davis, Richard A. & Mikosch, Thomas, 2008. "Extreme value theory for space-time processes with heavy-tailed distributions," Stochastic Processes and their Applications, Elsevier, vol. 118(4), pages 560-584, April.
    2. Lien, Da-Hsiang Donald, 1986. "Moments of ordered bivariate log-normal distributions," Economics Letters, Elsevier, vol. 20(1), pages 45-47.
    3. Yong Bum Cho & Richard A. Davis & Souvik Ghosh, 2016. "Asymptotic Properties of the Empirical Spatial Extremogram," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(3), pages 757-773, September.
    4. Einmahl, J.H.J. & de Haan, L.F.M. & Li, D., 2006. "Weighted approximations of tail copula processes with applications to testing the bivariate extreme value condition," Other publications TiSEM 18b65ac3-ba79-4bff-ad53-2, Tilburg University, School of Economics and Management.
    5. Ferreira, H. & Pereira, L., 2008. "How to compute the extremal index of stationary random fields," Statistics & Probability Letters, Elsevier, vol. 78(11), pages 1301-1304, August.
    6. Basrak, Bojan & Segers, Johan, 2009. "Regularly varying multivariate time series," Stochastic Processes and their Applications, Elsevier, vol. 119(4), pages 1055-1080, April.
    7. Schlather, Martin, 2001. "Examples for the coefficient of tail dependence and the domain of attraction of a bivariate extreme value distribution," Statistics & Probability Letters, Elsevier, vol. 53(3), pages 325-329, June.
    8. Hult, Henrik & Lindskog, Filip, 2005. "Extremal behavior of regularly varying stochastic processes," Stochastic Processes and their Applications, Elsevier, vol. 115(2), pages 249-274, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Damek, Ewa & Mikosch, Thomas & Zhao, Yuwei & Zienkiewicz, Jacek, 2023. "Whittle estimation based on the extremal spectral density of a heavy-tailed random field," Stochastic Processes and their Applications, Elsevier, vol. 155(C), pages 232-267.
    2. Hashorva, Enkelejd & Kume, Alfred, 2021. "Multivariate max-stable processes and homogeneous functionals," Statistics & Probability Letters, Elsevier, vol. 173(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Di Bernardino, Elena & Maume-Deschamps, Véronique & Prieur, Clémentine, 2013. "Estimating a bivariate tail: A copula based approach," Journal of Multivariate Analysis, Elsevier, vol. 119(C), pages 81-100.
    2. Rootzen, Holger & Segers, Johan & Wadsworth, Jennifer, 2017. "Multivariate generalized Pareto distributions: parametrizations, representations, and properties," LIDAM Discussion Papers ISBA 2017016, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    3. Damek, Ewa & Mikosch, Thomas & Zhao, Yuwei & Zienkiewicz, Jacek, 2023. "Whittle estimation based on the extremal spectral density of a heavy-tailed random field," Stochastic Processes and their Applications, Elsevier, vol. 155(C), pages 232-267.
    4. Davis, Richard A. & Mikosch, Thomas & Zhao, Yuwei, 2013. "Measures of serial extremal dependence and their estimation," Stochastic Processes and their Applications, Elsevier, vol. 123(7), pages 2575-2602.
    5. José G. Gómez-García & Christophe Chesneau, 2021. "A Dependent Lindeberg Central Limit Theorem for Cluster Functionals on Stationary Random Fields," Mathematics, MDPI, vol. 9(3), pages 1-14, January.
    6. Li, Zenghu & Ma, Chunhua, 2015. "Asymptotic properties of estimators in a stable Cox–Ingersoll–Ross model," Stochastic Processes and their Applications, Elsevier, vol. 125(8), pages 3196-3233.
    7. Rootzén, Holger & Segers, Johan & Wadsworth, Jennifer L., 2018. "Multivariate generalized Pareto distributions: Parametrizations, representations, and properties," Journal of Multivariate Analysis, Elsevier, vol. 165(C), pages 117-131.
    8. Clémençon, Stephan & Huet, Nathan & Sabourin, Anne, 2024. "Regular variation in Hilbert spaces and principal component analysis for functional extremes," Stochastic Processes and their Applications, Elsevier, vol. 174(C).
    9. Tan, Zhongquan, 2013. "The limit theorems on extremes for Gaussian random fields," Statistics & Probability Letters, Elsevier, vol. 83(2), pages 436-444.
    10. Pedersen, Rasmus Søndergaard, 2016. "Targeting Estimation Of Ccc-Garch Models With Infinite Fourth Moments," Econometric Theory, Cambridge University Press, vol. 32(2), pages 498-531, April.
    11. R de Fondeville & A C Davison, 2018. "High-dimensional peaks-over-threshold inference," Biometrika, Biometrika Trust, vol. 105(3), pages 575-592.
    12. Moosup Kim & Sangyeol Lee, 2022. "Maximum composite likelihood estimation for spatial extremes models of Brown–Resnick type with application to precipitation data," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 49(3), pages 1023-1059, September.
    13. Maarten R C van Oordt & Chen Zhou, 2019. "Estimating Systematic Risk under Extremely Adverse Market Conditions," Journal of Financial Econometrics, Oxford University Press, vol. 17(3), pages 432-461.
    14. Davis, Richard A. & Mikosch, Thomas & Cribben, Ivor, 2012. "Towards estimating extremal serial dependence via the bootstrapped extremogram," Journal of Econometrics, Elsevier, vol. 170(1), pages 142-152.
    15. Rafal Kulik & Philippe Soulier, 2013. "Heavy tailed time series with extremal independence," Papers 1307.1501, arXiv.org, revised Oct 2014.
    16. Zhao, Zifeng & Zhang, Zhengjun & Chen, Rong, 2018. "Modeling maxima with autoregressive conditional Fréchet model," Journal of Econometrics, Elsevier, vol. 207(2), pages 325-351.
    17. Cohen, Serge & Mikosch, Thomas, 2008. "Tail behavior of random products and stochastic exponentials," Stochastic Processes and their Applications, Elsevier, vol. 118(3), pages 333-345, March.
    18. Janßen, Anja, 2019. "Spectral tail processes and max-stable approximations of multivariate regularly varying time series," Stochastic Processes and their Applications, Elsevier, vol. 129(6), pages 1993-2009.
    19. Yuen, Robert & Stoev, Stilian & Cooley, Daniel, 2020. "Distributionally robust inference for extreme Value-at-Risk," Insurance: Mathematics and Economics, Elsevier, vol. 92(C), pages 70-89.
    20. Robert, Christian Y., 2022. "Testing for changes in the tail behavior of Brown–Resnick Pareto processes," Stochastic Processes and their Applications, Elsevier, vol. 144(C), pages 312-368.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:130:y:2020:i:7:p:4470-4492. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.