IDEAS home Printed from https://ideas.repec.org/r/eee/rensus/v91y2018icp259-271.html
   My bibliography  Save this item

Wet torrefaction of biomass for high quality solid fuel production: A review

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Kostyniuk, Andrii & Likozar, Blaž, 2024. "Wet torrefaction of biomass waste into value-added liquid product (5-HMF) and high quality solid fuel (hydrochar) in a nitrogen atmosphere," Renewable Energy, Elsevier, vol. 226(C).
  2. Manal Hessien, 2022. "Microwave-Assisted Hydrothermal Carbonization of Pomegranate Peels into Hydrochar for Environmental Applications," Energies, MDPI, vol. 15(10), pages 1-13, May.
  3. José Airton de Mattos Carneiro-Junior & Giulyane Felix de Oliveira & Carine Tondo Alves & Heloysa Martins Carvalho Andrade & Silvio Alexandre Beisl Vieira de Melo & Ednildo Andrade Torres, 2021. "Valorization of Prosopis juliflora Woody Biomass in Northeast Brazilian through Dry Torrefaction," Energies, MDPI, vol. 14(12), pages 1-17, June.
  4. Ong, Hwai Chyuan & Chen, Wei-Hsin & Farooq, Abid & Gan, Yong Yang & Lee, Keat Teong & Ashokkumar, Veeramuthu, 2019. "Catalytic thermochemical conversion of biomass for biofuel production: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
  5. Gallifuoco, Alberto & Taglieri, Luca & Papa, Alessandro Antonio, 2020. "Hydrothermal carbonization of waste biomass to fuel: A novel technique for analyzing experimental data," Renewable Energy, Elsevier, vol. 149(C), pages 1254-1260.
  6. Kumar, R. & Strezov, V. & Weldekidan, H. & He, J. & Singh, S. & Kan, T. & Dastjerdi, B., 2020. "Lignocellulose biomass pyrolysis for bio-oil production: A review of biomass pre-treatment methods for production of drop-in fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 123(C).
  7. Huang, Neng & Zhao, Peitao & Ghosh, Sudip & Fedyukhin, Alexander, 2019. "Co-hydrothermal carbonization of polyvinyl chloride and moist biomass to remove chlorine and inorganics for clean fuel production," Applied Energy, Elsevier, vol. 240(C), pages 882-892.
  8. Agnieszka Urbanowska & Małgorzata Kabsch-Korbutowicz & Mateusz Wnukowski & Przemysław Seruga & Marcin Baranowski & Halina Pawlak-Kruczek & Monika Serafin-Tkaczuk & Krystian Krochmalny & Lukasz Niedzwi, 2020. "Treatment of Liquid By-Products of Hydrothermal Carbonization (HTC) of Agricultural Digestate Using Membrane Separation," Energies, MDPI, vol. 13(1), pages 1-12, January.
  9. Bajwa, Dilpreet S. & Peterson, Tyler & Sharma, Neeta & Shojaeiarani, Jamileh & Bajwa, Sreekala G., 2018. "A review of densified solid biomass for energy production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 296-305.
  10. Surup, Gerrit Ralf & Leahy, James J. & Timko, Michael T. & Trubetskaya, Anna, 2020. "Hydrothermal carbonization of olive wastes to produce renewable, binder-free pellets for use as metallurgical reducing agents," Renewable Energy, Elsevier, vol. 155(C), pages 347-357.
  11. Azzaz, Ahmed Amine & Khiari, Besma & Jellali, Salah & Ghimbeu, Camélia Matei & Jeguirim, Mejdi, 2020. "Hydrochars production, characterization and application for wastewater treatment: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 127(C).
  12. Qi, Renzhi & Xu, Zhihua & Zhou, Yuwei & Zhang, Daofang & Sun, Zhenhua & Chen, Weifang & Xiong, Mengmeng, 2021. "Clean solid fuel produced from cotton textiles waste through hydrothermal carbonization with FeCl3: Upgrading the fuel quality and combustion characteristics," Energy, Elsevier, vol. 214(C).
  13. Kostyniuk, Andrii & Likozar, Blaž, 2024. "Wet torrefaction of biomass waste into high quality hydrochar and value-added liquid products using different zeolite catalysts," Renewable Energy, Elsevier, vol. 227(C).
  14. Lin, Yousheng & Ge, Ya & Xiao, Hanmin & He, Qing & Wang, Wenhao & Chen, Baiman, 2020. "Investigation of hydrothermal co-carbonization of waste textile with waste wood, waste paper and waste food from typical municipal solid wastes," Energy, Elsevier, vol. 210(C).
  15. Ye, Lian & Zhang, Jianliang & Wang, Guangwei & Wang, Chen & Mao, Xiaoming & Ning, Xiaojun & Zhang, Nan & Teng, Haipeng & Li, Jinhua & Wang, Chuan, 2023. "Feasibility analysis of plastic and biomass hydrochar for blast furnace injection," Energy, Elsevier, vol. 263(PD).
  16. Zhuang, Xiuzheng & Liu, Jianguo & Zhang, Qi & Wang, Chenguang & Zhan, Hao & Ma, Longlong, 2022. "A review on the utilization of industrial biowaste via hydrothermal carbonization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
  17. Lin, Yi-Li & Zheng, Nai-Yun & Lin, Ching-Shi, 2021. "Repurposing Washingtonia filifera petiole and Sterculia foetida follicle waste biomass for renewable energy through torrefaction," Energy, Elsevier, vol. 223(C).
  18. Dai, Leilei & Wang, Yunpu & Liu, Yuhuan & Ruan, Roger & He, Chao & Yu, Zhenting & Jiang, Lin & Zeng, Zihong & Tian, Xiaojie, 2019. "Integrated process of lignocellulosic biomass torrefaction and pyrolysis for upgrading bio-oil production: A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 20-36.
  19. Tera, Ibrahim & Zhang, Shengan & Liu, Guilian, 2024. "A conceptual hydrogen, heat and power polygeneration system based on biomass gasification, SOFC and waste heat recovery units: Energy, exergy, economic and emergy (4E) assessment," Energy, Elsevier, vol. 295(C).
  20. Liu, Li & Jiang, Peng & Qian, Hongliang & Mu, Liwen & Lu, Xiaohua & Zhu, Jiahua, 2022. "CO2-negative biomass conversion: An economic route with co-production of green hydrogen and highly porous carbon," Applied Energy, Elsevier, vol. 311(C).
  21. Alessandro Antonio Papa & Andrea Di Carlo & Enrico Bocci & Luca Taglieri & Luca Del Zotto & Alberto Gallifuoco, 2021. "Energy Analysis of an Integrated Plant: Fluidized Bed Steam Gasification of Hydrothermally Treated Biomass Coupled to Solid Oxide Fuel Cells," Energies, MDPI, vol. 14(21), pages 1-13, November.
  22. Antonios Nazos & Panagiotis Grammelis & Elias Sakellis & Dimitrios Sidiras, 2020. "Acid-Catalyzed Wet Torrefaction for Enhancing the Heating Value of Barley Straw," Energies, MDPI, vol. 13(7), pages 1-16, April.
  23. Yao, Zhongliang & Ma, Xiaoqian & Xiao, Zhiyuan, 2020. "The effect of two pretreatment levels on the pyrolysis characteristics of water hyacinth," Renewable Energy, Elsevier, vol. 151(C), pages 514-527.
  24. Briongos, J.V. & Taramona, S. & Gómez-Hernández, J. & Mulone, V. & Santana, D., 2021. "Solar and biomass hybridization through hydrothermal carbonization," Renewable Energy, Elsevier, vol. 177(C), pages 268-279.
  25. Lin, Yi-Li & Zheng, Nai-Yun, 2021. "Biowaste-to-biochar through microwave-assisted wet co-torrefaction of blending mango seed and passion shell with optoelectronic sludge," Energy, Elsevier, vol. 225(C).
  26. Kumar, R. & Strezov, V., 2021. "Thermochemical production of bio-oil: A review of downstream processing technologies for bio-oil upgrading, production of hydrogen and high value-added products," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.