IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v225y2021ics036054422100462x.html
   My bibliography  Save this article

Biowaste-to-biochar through microwave-assisted wet co-torrefaction of blending mango seed and passion shell with optoelectronic sludge

Author

Listed:
  • Lin, Yi-Li
  • Zheng, Nai-Yun

Abstract

Microwave-assisted wet torrefaction (WT) was investigated for the co-torrefaction of optoelectronic sludge (OS) and fruit waste. The factors of torrefaction temperature (120–180 °C), reaction time (10–40 min), biowaste types of Mangifera indica seeds (MIse) and Passiflora edulis shells (PEsh), and blending ratio of OS and biowaste were investigated. Blending OS with two biowaste types separately at different blending ratios increases the biofuel quality and mitigates the problem of waste disposal. Blending OS with MIse at a ratio of 25/75 under the same WT condition further increased the HHV of 19.0 MJ/kg while retaining a high energy yield of 92.1%. Thermogravimetric analysis and derivative thermogravimetry results confirmed that the properties (particularly dehydration and devolatilization) pertaining to the thermal stability of co-torrefied biochar were superior to the raw OS. Furthermore, the 10%–20% co-torrefied biochar can replace sub-bituminous coal and reduce the global warming potential. Co-firing the obtained biochar with bituminous coal could aid in achieving high combustibility (fuel ratios of 1.60–1.82), high energy efficiency (energy return on investment of 14.7), and environmental sustainability (approximately 6.6%–13.2% less greenhouse gas emissions than bituminous coal). In summary, microwave-assisted WT is a potential technology for producing renewable energy.

Suggested Citation

  • Lin, Yi-Li & Zheng, Nai-Yun, 2021. "Biowaste-to-biochar through microwave-assisted wet co-torrefaction of blending mango seed and passion shell with optoelectronic sludge," Energy, Elsevier, vol. 225(C).
  • Handle: RePEc:eee:energy:v:225:y:2021:i:c:s036054422100462x
    DOI: 10.1016/j.energy.2021.120213
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054422100462X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.120213?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lee, Jong Min & Kim, Dong Won & Kim, Jae Sung, 2011. "Characteristics of co-combustion of anthracite with bituminous coal in a 200-MWe circulating fluidized bed boiler," Energy, Elsevier, vol. 36(9), pages 5703-5709.
    2. Motasemi, F. & Afzal, Muhammad T., 2013. "A review on the microwave-assisted pyrolysis technique," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 317-330.
    3. Huang, Yu-Fong & Sung, Hsuan-Te & Chiueh, Pei-Te & Lo, Shang-Lien, 2016. "Co-torrefaction of sewage sludge and leucaena by using microwave heating," Energy, Elsevier, vol. 116(P1), pages 1-7.
    4. Dogan, Eyup & Inglesi-Lotz, Roula, 2017. "Analyzing the effects of real income and biomass energy consumption on carbon dioxide (CO2) emissions: Empirical evidence from the panel of biomass-consuming countries," Energy, Elsevier, vol. 138(C), pages 721-727.
    5. He, Chao & Tang, Chunyan & Li, Chuanhao & Yuan, Jihui & Tran, Khanh-Quang & Bach, Quang-Vu & Qiu, Rongliang & Yang, Yanhui, 2018. "Wet torrefaction of biomass for high quality solid fuel production: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 259-271.
    6. Wilk, Małgorzata & Magdziarz, Aneta & Kalemba, Izabela, 2015. "Characterisation of renewable fuels' torrefaction process with different instrumental techniques," Energy, Elsevier, vol. 87(C), pages 259-269.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mohamad Aziz, Nur Atiqah & Mohamed, Hassan & Kania, Dina & Ong, Hwai Chyuan & Zainal, Bidattul Syirat & Junoh, Hazlina & Ker, Pin Jern & Silitonga, A.S., 2024. "Bioenergy production by integrated microwave-assisted torrefaction and pyrolysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
    2. Abdul Waheed & Salman Raza Naqvi & Imtiaz Ali, 2022. "Co-Torrefaction Progress of Biomass Residue/Waste Obtained for High-Value Bio-Solid Products," Energies, MDPI, vol. 15(21), pages 1-20, November.
    3. Lin, Y.L. & Chen, S.T. & Zheng, N.Y. & Wang, H.C., 2023. "Green sludge dewatering and recycling technology for generating renewable energy and liquid nutrients: Bench- and pilot-scale studies," Energy, Elsevier, vol. 278(PB).
    4. Yek, Peter Nai Yuh & Chen, Xiangmeng & Peng, Wanxi & Liew, Rock Keey & Cheng, Chin Kui & Sonne, Christian & Sii, How Sing & Lam, Su Shiung, 2021. "Microwave co-torrefaction of waste oil and biomass pellets for simultaneous recovery of waste and co-firing fuel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lin, Yi-Li & Zheng, Nai-Yun & Lin, Ching-Shi, 2021. "Repurposing Washingtonia filifera petiole and Sterculia foetida follicle waste biomass for renewable energy through torrefaction," Energy, Elsevier, vol. 223(C).
    2. Siddique, Istiaq Jamil & Salema, Arshad Adam & Antunes, Elsa & Vinu, Ravikrishnan, 2022. "Technical challenges in scaling up the microwave technology for biomass processing," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    3. Dai, Leilei & Wang, Yunpu & Liu, Yuhuan & Ruan, Roger & He, Chao & Yu, Zhenting & Jiang, Lin & Zeng, Zihong & Tian, Xiaojie, 2019. "Integrated process of lignocellulosic biomass torrefaction and pyrolysis for upgrading bio-oil production: A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 20-36.
    4. Huang, Shengxiong & Lei, Can & Qin, Jie & Yi, Cheng & Chen, Tao & Yao, Lingling & Li, Bo & Wen, Yujiao & Zhou, Zhi & Xia, Mao, 2022. "Properties, kinetics and pyrolysis products distribution of oxidative torrefied camellia shell in different oxygen concentration," Energy, Elsevier, vol. 251(C).
    5. Bakirtas, Tahsin & Akpolat, Ahmet Gokce, 2018. "The relationship between energy consumption, urbanization, and economic growth in new emerging-market countries," Energy, Elsevier, vol. 147(C), pages 110-121.
    6. Ye, Lian & Zhang, Jianliang & Wang, Guangwei & Wang, Chen & Mao, Xiaoming & Ning, Xiaojun & Zhang, Nan & Teng, Haipeng & Li, Jinhua & Wang, Chuan, 2023. "Feasibility analysis of plastic and biomass hydrochar for blast furnace injection," Energy, Elsevier, vol. 263(PD).
    7. Tera, Ibrahim & Zhang, Shengan & Liu, Guilian, 2024. "A conceptual hydrogen, heat and power polygeneration system based on biomass gasification, SOFC and waste heat recovery units: Energy, exergy, economic and emergy (4E) assessment," Energy, Elsevier, vol. 295(C).
    8. Kumar N, Sasi & Grekov, Denys & Pré, Pascaline & Alappat, Babu J., 2020. "Microwave mode of heating in the preparation of porous carbon materials for adsorption and energy storage applications – An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 124(C).
    9. Zhang, Xiaoyu & Zhu, Shujun & Zhu, Jianguo & Liu, Yuhua & Zhang, Jiahang & Hui, Jicheng & Ding, Hongliang & Cao, Xiaoyang & Lyu, Qinggang, 2023. "Preheating and combustion characteristics of anthracite under O2/N2, O2/CO2 and O2/CO2/H2O atmospheres," Energy, Elsevier, vol. 274(C).
    10. Yao, Zhongliang & Ma, Xiaoqian & Xiao, Zhiyuan, 2020. "The effect of two pretreatment levels on the pyrolysis characteristics of water hyacinth," Renewable Energy, Elsevier, vol. 151(C), pages 514-527.
    11. Kumar, R. & Strezov, V., 2021. "Thermochemical production of bio-oil: A review of downstream processing technologies for bio-oil upgrading, production of hydrogen and high value-added products," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    12. Dejian Yu & Sun Meng, 2018. "An overview of biomass energy research with bibliometric indicators," Energy & Environment, , vol. 29(4), pages 576-590, June.
    13. Junshen Qu & Daiying Wang & Zeyu Deng & Hejie Yu & Jianjun Dai & Xiaotao Bi, 2023. "Biochar Prepared by Microwave-Assisted Co-Pyrolysis of Sewage Sludge and Cotton Stalk: A Potential Soil Conditioner," Sustainability, MDPI, vol. 15(9), pages 1-18, April.
    14. Magdziarz, Aneta & Wilk, Małgorzata & Gajek, Marcin & Nowak-Woźny, Dorota & Kopia, Agnieszka & Kalemba-Rec, Izabela & Koziński, Janusz A., 2016. "Properties of ash generated during sewage sludge combustion: A multifaceted analysis," Energy, Elsevier, vol. 113(C), pages 85-94.
    15. Ge, Shengbo & Yek, Peter Nai Yuh & Cheng, Yoke Wang & Xia, Changlei & Wan Mahari, Wan Adibah & Liew, Rock Keey & Peng, Wanxi & Yuan, Tong-Qi & Tabatabaei, Meisam & Aghbashlo, Mortaza & Sonne, Christia, 2021. "Progress in microwave pyrolysis conversion of agricultural waste to value-added biofuels: A batch to continuous approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    16. Liu, Li & Jiang, Peng & Qian, Hongliang & Mu, Liwen & Lu, Xiaohua & Zhu, Jiahua, 2022. "CO2-negative biomass conversion: An economic route with co-production of green hydrogen and highly porous carbon," Applied Energy, Elsevier, vol. 311(C).
    17. Kuznetsov, G.V. & Syrodoy, S.V. & Nigay, N.A. & Maksimov, V.I. & Gutareva, N.Yu., 2021. "Features of the processes of heat and mass transfer when drying a large thickness layer of wood biomass," Renewable Energy, Elsevier, vol. 169(C), pages 498-511.
    18. Kostyniuk, Andrii & Likozar, Blaž, 2024. "Wet torrefaction of biomass waste into high quality hydrochar and value-added liquid products using different zeolite catalysts," Renewable Energy, Elsevier, vol. 227(C).
    19. Lin, Yousheng & Ge, Ya & Xiao, Hanmin & He, Qing & Wang, Wenhao & Chen, Baiman, 2020. "Investigation of hydrothermal co-carbonization of waste textile with waste wood, waste paper and waste food from typical municipal solid wastes," Energy, Elsevier, vol. 210(C).
    20. Shahnazi, Rouhollah & Dehghan Shabani, Zahra, 2021. "The effects of renewable energy, spatial spillover of CO2 emissions and economic freedom on CO2 emissions in the EU," Renewable Energy, Elsevier, vol. 169(C), pages 293-307.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:225:y:2021:i:c:s036054422100462x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.