IDEAS home Printed from https://ideas.repec.org/r/eee/rensus/v79y2017icp1266-1274.html
   My bibliography  Save this item

Non-intrusive load monitoring through home energy management systems: A comprehensive review

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Flavio Martins & Maria Fatima Almeida & Rodrigo Calili & Agatha Oliveira, 2020. "Design Thinking Applied to Smart Home Projects: A User-Centric and Sustainable Perspective," Sustainability, MDPI, vol. 12(23), pages 1-27, December.
  2. Younghoon Kwak & Jihyun Hwang & Taewon Lee, 2018. "Load Disaggregation via Pattern Recognition: A Feasibility Study of a Novel Method in Residential Building," Energies, MDPI, vol. 11(4), pages 1-22, April.
  3. Muhammad Majid Hussain & Rizwan Akram & Zulfiqar Ali Memon & Mian Hammad Nazir & Waqas Javed & Muhammad Siddique, 2021. "Demand Side Management Techniques for Home Energy Management Systems for Smart Cities," Sustainability, MDPI, vol. 13(21), pages 1-20, October.
  4. Lemos-Vinasco, Julian & Bacher, Peder & Møller, Jan Kloppenborg, 2021. "Probabilistic load forecasting considering temporal correlation: Online models for the prediction of households’ electrical load," Applied Energy, Elsevier, vol. 303(C).
  5. Omar Alrawi & I. Safak Bayram & Sami G. Al-Ghamdi & Muammer Koc, 2019. "High-Resolution Household Load Profiling and Evaluation of Rooftop PV Systems in Selected Houses in Qatar," Energies, MDPI, vol. 12(20), pages 1-25, October.
  6. Liu, Yu & Liu, Wei & Shen, Yiwen & Zhao, Xin & Gao, Shan, 2021. "Toward smart energy user: Real time non-intrusive load monitoring with simultaneous switching operations," Applied Energy, Elsevier, vol. 287(C).
  7. Paoli, Leonardo & Lupton, Richard C. & Cullen, Jonathan M., 2018. "Useful energy balance for the UK: An uncertainty analysis," Applied Energy, Elsevier, vol. 228(C), pages 176-188.
  8. Zheng, Zhuang & Sun, Zhankun & Pan, Jia & Luo, Xiaowei, 2021. "An integrated smart home energy management model based on a pyramid taxonomy for residential houses with photovoltaic-battery systems," Applied Energy, Elsevier, vol. 298(C).
  9. Netzah Calamaro & Moshe Donko & Doron Shmilovitz, 2021. "A Highly Accurate NILM: With an Electro-Spectral Space That Best Fits Algorithm’s National Deployment Requirements," Energies, MDPI, vol. 14(21), pages 1-37, November.
  10. Antonio Ruano & Alvaro Hernandez & Jesus Ureña & Maria Ruano & Juan Garcia, 2019. "NILM Techniques for Intelligent Home Energy Management and Ambient Assisted Living: A Review," Energies, MDPI, vol. 12(11), pages 1-29, June.
  11. Tanoni, Giulia & Principi, Emanuele & Squartini, Stefano, 2024. "Non-Intrusive Load Monitoring in industrial settings: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 202(C).
  12. Zhuang Zheng & Hainan Chen & Xiaowei Luo, 2018. "A Supervised Event-Based Non-Intrusive Load Monitoring for Non-Linear Appliances," Sustainability, MDPI, vol. 10(4), pages 1-28, March.
  13. Farhad Farokhi, 2019. "Temporally Discounted Differential Privacy for Evolving Datasets on an Infinite Horizon," Papers 1908.03995, arXiv.org, revised Jan 2020.
  14. Liu, Yu & Liu, Congxiao & Ling, Qicheng & Zhao, Xin & Gao, Shan & Huang, Xueliang, 2021. "Toward smart distributed renewable generation via multi-uncertainty featured non-intrusive interactive energy monitoring," Applied Energy, Elsevier, vol. 303(C).
  15. Debnath, Ramit & Bardhan, Ronita & Misra, Ashwin & Hong, Tianzhen & Rozite, Vida & Ramage, Michael H., 2022. "Lockdown impacts on residential electricity demand in India: A data-driven and non-intrusive load monitoring study using Gaussian mixture models," Energy Policy, Elsevier, vol. 164(C).
  16. Marikyan, Davit & Papagiannidis, Savvas & Alamanos, Eleftherios, 2019. "A systematic review of the smart home literature: A user perspective," Technological Forecasting and Social Change, Elsevier, vol. 138(C), pages 139-154.
  17. Luan, Wenpeng & Tian, Longfei & Zhao, Bochao, 2023. "Leveraging hybrid probabilistic multi-objective evolutionary algorithm for dynamic tariff design," Applied Energy, Elsevier, vol. 342(C).
  18. Moreno Jaramillo, Andres F. & Laverty, David M. & Morrow, D. John & Martinez del Rincon, Jesús & Foley, Aoife M., 2021. "Load modelling and non-intrusive load monitoring to integrate distributed energy resources in low and medium voltage networks," Renewable Energy, Elsevier, vol. 179(C), pages 445-466.
  19. Ce Peng & Guoying Lin & Shaopeng Zhai & Yi Ding & Guangyu He, 2020. "Non-Intrusive Load Monitoring via Deep Learning Based User Model and Appliance Group Model," Energies, MDPI, vol. 13(21), pages 1-19, October.
  20. Himeur, Yassine & Alsalemi, Abdullah & Bensaali, Faycal & Amira, Abbes, 2020. "Robust event-based non-intrusive appliance recognition using multi-scale wavelet packet tree and ensemble bagging tree," Applied Energy, Elsevier, vol. 267(C).
  21. Cristina Puente & Rafael Palacios & Yolanda González-Arechavala & Eugenio Francisco Sánchez-Úbeda, 2020. "Non-Intrusive Load Monitoring (NILM) for Energy Disaggregation Using Soft Computing Techniques," Energies, MDPI, vol. 13(12), pages 1-20, June.
  22. Raphael Iten & Joël Wagner & Angela Zeier Röschmann, 2021. "On the Identification, Evaluation and Treatment of Risks in Smart Homes: A Systematic Literature Review," Risks, MDPI, vol. 9(6), pages 1-30, June.
  23. Shimoda, Yoshiyuki & Yamaguchi, Yohei & Iwafune, Yumiko & Hidaka, Kazuyoshi & Meier, Alan & Yagita, Yoshie & Kawamoto, Hisaki & Nishikiori, Soichi, 2020. "Energy demand science for a decarbonized society in the context of the residential sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
  24. Toro-Cárdenas, Mateo & Moreira, Inês & Morais, Hugo & Carvalho, Pedro M.S. & Ferreira, Luis A.F.M., 2023. "Net load disaggregation at secondary substation level," Renewable Energy, Elsevier, vol. 207(C), pages 765-771.
  25. Tomasz Jasiński, 2020. "Modelling the Disaggregated Demand for Electricity in Residential Buildings Using Artificial Neural Networks (Deep Learning Approach)," Energies, MDPI, vol. 13(5), pages 1-16, March.
  26. Karol Bot & Samira Santos & Inoussa Laouali & Antonio Ruano & Maria da Graça Ruano, 2021. "Design of Ensemble Forecasting Models for Home Energy Management Systems," Energies, MDPI, vol. 14(22), pages 1-37, November.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.