IDEAS home Printed from https://ideas.repec.org/r/eee/rensus/v62y2016icp305-317.html
   My bibliography  Save this item

Thermal conductivity enhancement of phase change materials for thermal energy storage: A review

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Zhang, Zhishan & Alva, Guruprasad & Gu, Min & Fang, Guiyin, 2018. "Experimental investigation on n–octadecane/polystyrene/expanded graphite composites as form–stable thermal energy storage materials," Energy, Elsevier, vol. 157(C), pages 625-632.
  2. Ran, Fengming & Chen, Yunkang & Cong, Rongshuai & Fang, Guiyin, 2020. "Flow and heat transfer characteristics of microencapsulated phase change slurry in thermal energy systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
  3. Palacios, Anabel & Cong, Lin & Navarro, M.E. & Ding, Yulong & Barreneche, Camila, 2019. "Thermal conductivity measurement techniques for characterizing thermal energy storage materials – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 32-52.
  4. Mao, Qianjun & Zhu, Yuanyuan & Li, Tao, 2023. "Study on heat storage performance of a novel bifurcated finned shell-tube heat storage tank," Energy, Elsevier, vol. 263(PA).
  5. Zeinelabdein, Rami & Omer, Siddig & Gan, Guohui, 2018. "Critical review of latent heat storage systems for free cooling in buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2843-2868.
  6. Khan, Zakir & Khan, Zulfiqar Ahmad, 2017. "Experimental investigations of charging/melting cycles of paraffin in a novel shell and tube with longitudinal fins based heat storage design solution for domestic and industrial applications," Applied Energy, Elsevier, vol. 206(C), pages 1158-1168.
  7. Dubey, Abhayjeet kumar & Sun, Jingyi & Choudhary, Tushar & Dash, Madhusmita & Rakshit, Dibakar & Ansari, M Zahid & Ramakrishna, Seeram & Liu, Yong & Nanda, Himansu Sekhar, 2023. "Emerging phase change materials with improved thermal efficiency for a clean and sustainable environment: An approach towards net zero," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
  8. Xie, Xing & Xu, Bin & Chen, Xing-ni & Pei, Gang, 2021. "Turning points emerging in the effect of thermal conductivity of phase change materials on utilization rate of latent heat in buildings," Renewable Energy, Elsevier, vol. 179(C), pages 1522-1536.
  9. Zhu, Yalin & Qin, Yaosong & Liang, Shuen & Chen, Keping & Tian, Chunrong & Wang, Jianhua & Luo, Xuan & Zhang, Lin, 2019. "Graphene/SiO2/n-octadecane nanoencapsulated phase change material with flower like morphology, high thermal conductivity, and suppressed supercooling," Applied Energy, Elsevier, vol. 250(C), pages 98-108.
  10. Li, Chuanchang & Wang, Mengfan & Xie, Baoshan & Ma, Huan & Chen, Jian, 2020. "Enhanced properties of diatomite-based composite phase change materials for thermal energy storage," Renewable Energy, Elsevier, vol. 147(P1), pages 265-274.
  11. Hu, Nan & Li, Zi-Rui & Xu, Zhe-Wen & Fan, Li-Wu, 2022. "Rapid charging for latent heat thermal energy storage: A state-of-the-art review of close-contact melting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
  12. Mazhar, Abdur Rehman & Liu, Shuli & Shukla, Ashish, 2020. "Experimental study on the thermal performance of a grey water heat harnessing exchanger using Phase Change Materials," Renewable Energy, Elsevier, vol. 146(C), pages 1805-1817.
  13. Bashiri Rezaie, Ali & Montazer, Majid, 2019. "One-step preparation of magnetically responsive nano CuFe2O4/fatty acids/polyester composite for dynamic thermal energy management applications," Renewable Energy, Elsevier, vol. 143(C), pages 1839-1851.
  14. Lin, Yaxue & Zhu, Chuqiao & Alva, Guruprasad & Fang, Guiyin, 2018. "Microencapsulation and thermal properties of myristic acid with ethyl cellulose shell for thermal energy storage," Applied Energy, Elsevier, vol. 231(C), pages 494-501.
  15. Xu, Bin & Xie, Xing & Pei, Gang & Chen, Xing-ni, 2020. "New view point on the effect of thermal conductivity on phase change materials based on novel concepts of relative depth of activation and time rate of activation: The case study on a top floor room," Applied Energy, Elsevier, vol. 266(C).
  16. Song, Shaokun & Ai, Hong & Zhu, Wanting & Qiu, Feng & Wang, Yuqi & Zhou, Jian, 2020. "Eco-friendly electrospun nanofibrous membranes with high thermal energy capacity and improved thermal transfer efficiency," Renewable Energy, Elsevier, vol. 148(C), pages 504-511.
  17. Siecker, J. & Kusakana, K. & Numbi, B.P., 2017. "A review of solar photovoltaic systems cooling technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 192-203.
  18. Wang, Guohui & Yang, Yanan & Wang, Shuxin & Zhang, Hongwei & Wang, Yanhui, 2019. "Efficiency analysis and experimental validation of the ocean thermal energy conversion with phase change material for underwater vehicle," Applied Energy, Elsevier, vol. 248(C), pages 475-488.
  19. Tao, Y.B. & He, Ya-Ling, 2018. "A review of phase change material and performance enhancement method for latent heat storage system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 245-259.
  20. Amaral, C. & Vicente, R. & Marques, P.A.A.P. & Barros-Timmons, A., 2017. "Phase change materials and carbon nanostructures for thermal energy storage: A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1212-1228.
  21. Jia, Yuting & Alva, Guruprasad & Fang, Guiyin, 2019. "Development and applications of photovoltaic–thermal systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 102(C), pages 249-265.
  22. Macmanus Chinenye Ndukwu & Lyes Bennamoun & Merlin Simo-Tagne, 2021. "Reviewing the Exergy Analysis of Solar Thermal Systems Integrated with Phase Change Materials," Energies, MDPI, vol. 14(3), pages 1-26, January.
  23. Lin, Yaxue & Jia, Yuting & Alva, Guruprasad & Fang, Guiyin, 2018. "Review on thermal conductivity enhancement, thermal properties and applications of phase change materials in thermal energy storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2730-2742.
  24. Wang, Tingyu & Wang, Shuangfeng & Geng, Lixia & Fang, Yutang, 2016. "Enhancement on thermal properties of paraffin/calcium carbonate phase change microcapsules with carbon network," Applied Energy, Elsevier, vol. 179(C), pages 601-608.
  25. Saulius Pakalka & Kęstutis Valančius & Giedrė Streckienė, 2021. "Experimental and Theoretical Investigation of the Natural Convection Heat Transfer Coefficient in Phase Change Material (PCM) Based Fin-and-Tube Heat Exchanger," Energies, MDPI, vol. 14(3), pages 1-14, January.
  26. Bazri, Shahab & Badruddin, Irfan Anjum & Naghavi, Mohammad Sajad & Bahiraei, Mehdi, 2018. "A review of numerical studies on solar collectors integrated with latent heat storage systems employing fins or nanoparticles," Renewable Energy, Elsevier, vol. 118(C), pages 761-778.
  27. Bin Li & Jiaming Guo & Jingjing Xia & Xinyu Wei & Hao Shen & Yongfeng Cao & Huazhong Lu & Enli Lü, 2020. "Temperature Distribution in Insulated Temperature-Controlled Container by Numerical Simulation," Energies, MDPI, vol. 13(18), pages 1-16, September.
  28. Fan, Man & Suo, Hanxiao & Yang, Hua & Zhang, Xuemei & Li, Xiaofei & Guo, Leihong & Kong, Xiangfei, 2022. "Experimental study on thermophysical parameters of a solar assisted cascaded latent heat thermal energy storage (CLHTES) system," Energy, Elsevier, vol. 256(C).
  29. Drissi, Sarra & Ling, Tung-Chai & Mo, Kim Hung & Eddhahak, Anissa, 2019. "A review of microencapsulated and composite phase change materials: Alteration of strength and thermal properties of cement-based materials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 467-484.
  30. Rahimi, M. & Ardahaie, S. Saedi & Hosseini, M.J. & Gorzin, M., 2020. "Energy and exergy analysis of an experimentally examined latent heat thermal energy storage system," Renewable Energy, Elsevier, vol. 147(P1), pages 1845-1860.
  31. Peng, Lihua & Chao, Luomeng & Xu, Ziqing & Yang, Haibin & Zheng, Dapeng & Wei, Boxuan & Sun, Changwei & Cui, Hongzhi, 2022. "High-efficiency energy-saving buildings utilizing potassium tungsten bronze heat-insulating glass and polyethylene glycol/expanded energy storage blanket," Energy, Elsevier, vol. 255(C).
  32. Nie, Binjian & Palacios, Anabel & Zou, Boyang & Liu, Jiaxu & Zhang, Tongtong & Li, Yunren, 2020. "Review on phase change materials for cold thermal energy storage applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
  33. Li, Wenqiang & Wan, Hao & Lou, Haijian & Fu, Yuliang & Qin, Fei & He, Guoqiang, 2017. "Enhanced thermal management with microencapsulated phase change material particles infiltrated in cellular metal foam," Energy, Elsevier, vol. 127(C), pages 671-679.
  34. Ewelina Radomska & Lukasz Mika & Karol Sztekler, 2020. "The Impact of Additives on the Main Properties of Phase Change Materials," Energies, MDPI, vol. 13(12), pages 1-34, June.
  35. Ahmed Hassan & Mohammad Shakeel Laghari & Yasir Rashid, 2016. "Micro-Encapsulated Phase Change Materials: A Review of Encapsulation, Safety and Thermal Characteristics," Sustainability, MDPI, vol. 8(10), pages 1-32, October.
  36. Randeep Singh & Sadegh Sadeghi & Bahman Shabani, 2018. "Thermal Conductivity Enhancement of Phase Change Materials for Low-Temperature Thermal Energy Storage Applications," Energies, MDPI, vol. 12(1), pages 1-20, December.
  37. Khan, Mohammed Mumtaz A. & Saidur, R. & Al-Sulaiman, Fahad A., 2017. "A review for phase change materials (PCMs) in solar absorption refrigeration systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 105-137.
  38. Gaur, Ankita & Ménézo, Christophe & Giroux--Julien, Stéphanie, 2017. "Numerical studies on thermal and electrical performance of a fully wetted absorber PVT collector with PCM as a storage medium," Renewable Energy, Elsevier, vol. 109(C), pages 168-187.
  39. Yao, Shouguang & Huang, Xinyu, 2021. "Study on solidification performance of PCM by longitudinal triangular fins in a triplex-tube thermal energy storage system," Energy, Elsevier, vol. 227(C).
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.