IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v266y2020ics0306261920303986.html
   My bibliography  Save this article

New view point on the effect of thermal conductivity on phase change materials based on novel concepts of relative depth of activation and time rate of activation: The case study on a top floor room

Author

Listed:
  • Xu, Bin
  • Xie, Xing
  • Pei, Gang
  • Chen, Xing-ni

Abstract

For the reason to explore the latent heat utilization of phase change materials (PCMs) under certain application conditions, the concept of relative depth of activation and time rate of activation was proposed for the first time. The relative depth of activation reflects the degree to which the PCM undergoes phase transition on the spatial scale, while the time rate of activation reflects the degree on the time scale. In addition, the two indices were calculated in a very short time, effectively avoiding the problem of underestimating the heat flux through the PCM. The thermal conductivity of PCM was selected as the optimization parameter, and the two indices were taken as the objective optimization function to evaluate the degree of latent heat utilization when PCM is applied to buildings. Through the software “BuildingEnergy” developed by the authors, it was found that the thermal conductivity which makes the two indices reach the maximum values varies in different application backgrounds. In order to maximize the matching degree between PCM and the applied environment, the thermal conductivity is not certainly the bigger the better or the smaller the better. Increasing thermal conductivity does not necessarily improve the degree of latent heat utilization, and may bring negative effects on it, and vice versa. By calculating relative depth of activation and time rate of activation, parameters of PCM can be directionally optimized to match their application background to achieve the goal of both building energy efficiency and better latent heat utilization.

Suggested Citation

  • Xu, Bin & Xie, Xing & Pei, Gang & Chen, Xing-ni, 2020. "New view point on the effect of thermal conductivity on phase change materials based on novel concepts of relative depth of activation and time rate of activation: The case study on a top floor room," Applied Energy, Elsevier, vol. 266(C).
  • Handle: RePEc:eee:appene:v:266:y:2020:i:c:s0306261920303986
    DOI: 10.1016/j.apenergy.2020.114886
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261920303986
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2020.114886?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Abden, Md Jaynul & Tao, Zhong & Pan, Zhu & George, Laurel & Wuhrer, Richard, 2020. "Inclusion of methyl stearate/diatomite composite in gypsum board ceiling for building energy conservation," Applied Energy, Elsevier, vol. 259(C).
    2. Mingli Li & Guoqing Gui & Zhibin Lin & Long Jiang & Hong Pan & Xingyu Wang, 2018. "Numerical Thermal Characterization and Performance Metrics of Building Envelopes Containing Phase Change Materials for Energy-Efficient Buildings," Sustainability, MDPI, vol. 10(8), pages 1-23, July.
    3. Saffari, Mohammad & de Gracia, Alvaro & Fernández, Cèsar & Cabeza, Luisa F., 2017. "Simulation-based optimization of PCM melting temperature to improve the energy performance in buildings," Applied Energy, Elsevier, vol. 202(C), pages 420-434.
    4. Yu, De-Hai & He, Zhi-Zhu, 2019. "Shape-remodeled macrocapsule of phase change materials for thermal energy storage and thermal management," Applied Energy, Elsevier, vol. 247(C), pages 503-516.
    5. Ye, Hong & Long, Linshuang & Zhang, Haitao & Zou, Ruqiang, 2014. "The performance evaluation of shape-stabilized phase change materials in building applications using energy saving index," Applied Energy, Elsevier, vol. 113(C), pages 1118-1126.
    6. Lei, Jiawei & Yang, Jinglei & Yang, En-Hua, 2016. "Energy performance of building envelopes integrated with phase change materials for cooling load reduction in tropical Singapore," Applied Energy, Elsevier, vol. 162(C), pages 207-217.
    7. de Gracia, Alvaro, 2019. "Dynamic building envelope with PCM for cooling purposes – Proof of concept," Applied Energy, Elsevier, vol. 235(C), pages 1245-1253.
    8. Yu, Jinghua & Yang, Qingchen & Ye, Hong & Luo, Yongqiang & Huang, Junchao & Xu, Xinhua & Gang, Wenjie & Wang, Jinbo, 2020. "Thermal performance evaluation and optimal design of building roof with outer-layer shape-stabilized PCM," Renewable Energy, Elsevier, vol. 145(C), pages 2538-2549.
    9. Pop, Octavian G. & Fechete Tutunaru, Lucian & Bode, Florin & Abrudan, Ancuţa C. & Balan, Mugur C., 2018. "Energy efficiency of PCM integrated in fresh air cooling systems in different climatic conditions," Applied Energy, Elsevier, vol. 212(C), pages 976-996.
    10. Alam, Morshed & Zou, Patrick X.W. & Sanjayan, Jay & Ramakrishnan, Sayanthan, 2019. "Energy saving performance assessment and lessons learned from the operation of an active phase change materials system in a multi-storey building in Melbourne," Applied Energy, Elsevier, vol. 238(C), pages 1582-1595.
    11. Liu, Lingkun & Su, Di & Tang, Yaojie & Fang, Guiyin, 2016. "Thermal conductivity enhancement of phase change materials for thermal energy storage: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 305-317.
    12. Ma, Zhenjun & Lin, Wenye & Sohel, M. Imroz, 2016. "Nano-enhanced phase change materials for improved building performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1256-1268.
    13. Kenisarin, Murat & Mahkamov, Khamid, 2016. "Passive thermal control in residential buildings using phase change materials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 371-398.
    14. Yang, Jialin & Yang, Lijun & Xu, Chao & Du, Xiaoze, 2016. "Experimental study on enhancement of thermal energy storage with phase-change material," Applied Energy, Elsevier, vol. 169(C), pages 164-176.
    15. Ye, Rongda & Lin, Wenzhu & Yuan, Kunjie & Fang, Xiaoming & Zhang, Zhengguo, 2017. "Experimental and numerical investigations on the thermal performance of building plane containing CaCl2·6H2O/expanded graphite composite phase change material," Applied Energy, Elsevier, vol. 193(C), pages 325-335.
    16. Fan, Liwu & Khodadadi, J.M., 2011. "Thermal conductivity enhancement of phase change materials for thermal energy storage: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 24-46, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xu, Bin & Cheng, Yuan-xia & Chen, Xing-ni & Xie, Xing & Ji, Jie & Jiao, Dong-sheng, 2023. "Error correction method for heat flux and a new algorithm employed in inverting wall thermal resistance using an artificial neural network: Based on IN-SITU heat flux measurements," Energy, Elsevier, vol. 282(C).
    2. Xie, Xing & Xu, Bin & Cheng, Yuan-xia & Pei, Gang, 2023. "New method of integrating experiment for maintaining low indoor temperature into numerical modelling: A feasibility demonstration in reduced-scale building model," Energy, Elsevier, vol. 284(C).
    3. Xie, Xing & Chen, Xing-ni & Xu, Bin & Fei, Yue & Pei, Gang, 2022. "Study based on “Heat Flux - Energy Saving Pointer”: Exploring why phase change materials is not energy efficient enough on internal wall in cold region," Renewable Energy, Elsevier, vol. 196(C), pages 1308-1324.
    4. Xie, Xing & Xu, Bin & Chen, Xing-ni & Pei, Gang, 2021. "Turning points emerging in the effect of thermal conductivity of phase change materials on utilization rate of latent heat in buildings," Renewable Energy, Elsevier, vol. 179(C), pages 1522-1536.
    5. Xingbo Yao & Bart J. Dewancker & Yuang Guo & Shuo Han & Juan Xu, 2020. "Study on Passive Ventilation and Cooling Strategies for Cold Lanes and Courtyard Houses—A Case Study of Rural Traditional Village in Shaanxi, China," Sustainability, MDPI, vol. 12(20), pages 1-36, October.
    6. Xie, Xing & Xu, Bin & Fei, Yue & Chen, Xing-ni & Pei, Gang & Ji, Jie, 2024. "Passive energy-saving design strategy and realization on high window-wall ratio buildings in subtropical regions," Renewable Energy, Elsevier, vol. 229(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xie, Xing & Xu, Bin & Chen, Xing-ni & Pei, Gang, 2021. "Turning points emerging in the effect of thermal conductivity of phase change materials on utilization rate of latent heat in buildings," Renewable Energy, Elsevier, vol. 179(C), pages 1522-1536.
    2. Randeep Singh & Sadegh Sadeghi & Bahman Shabani, 2018. "Thermal Conductivity Enhancement of Phase Change Materials for Low-Temperature Thermal Energy Storage Applications," Energies, MDPI, vol. 12(1), pages 1-20, December.
    3. Al-Yasiri, Qudama & Szabó, Márta, 2022. "Energetic and thermal comfort assessment of phase change material passively incorporated building envelope in severe hot Climate: An experimental study," Applied Energy, Elsevier, vol. 314(C).
    4. Lamrani, B. & Johannes, K. & Kuznik, F., 2021. "Phase change materials integrated into building walls: An updated review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 140(C).
    5. Tao, Y.B. & He, Ya-Ling, 2018. "A review of phase change material and performance enhancement method for latent heat storage system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 245-259.
    6. Lin, Yaxue & Jia, Yuting & Alva, Guruprasad & Fang, Guiyin, 2018. "Review on thermal conductivity enhancement, thermal properties and applications of phase change materials in thermal energy storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2730-2742.
    7. Ahmad, Abrar & Memon, Shazim Ali, 2024. "A novel method to evaluate phase change materials' impact on buildings' energy, economic, and environmental performance via controlled natural ventilation," Applied Energy, Elsevier, vol. 353(PB).
    8. Mohseni, Ehsan & Tang, Waiching, 2021. "Parametric analysis and optimisation of energy efficiency of a lightweight building integrated with different configurations and types of PCM," Renewable Energy, Elsevier, vol. 168(C), pages 865-877.
    9. Maleki, Mahdi & Imani, Abolhassan & Ahmadi, Rouhollah & Banna Motejadded Emrooz, Hosein & Beitollahi, Ali, 2020. "Low-cost carbon foam as a practical support for organic phase change materials in thermal management," Applied Energy, Elsevier, vol. 258(C).
    10. Akeiber, Hussein & Nejat, Payam & Majid, Muhd Zaimi Abd. & Wahid, Mazlan A. & Jomehzadeh, Fatemeh & Zeynali Famileh, Iman & Calautit, John Kaiser & Hughes, Ben Richard & Zaki, Sheikh Ahmad, 2016. "A review on phase change material (PCM) for sustainable passive cooling in building envelopes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1470-1497.
    11. Zeinelabdein, Rami & Omer, Siddig & Gan, Guohui, 2018. "Critical review of latent heat storage systems for free cooling in buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2843-2868.
    12. Hu, Nan & Li, Zi-Rui & Xu, Zhe-Wen & Fan, Li-Wu, 2022. "Rapid charging for latent heat thermal energy storage: A state-of-the-art review of close-contact melting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    13. Saurbayeva, Assemgul & Memon, Shazim Ali & Kim, Jong, 2023. "Integrated multi-stage sensitivity analysis and multi-objective optimization approach for PCM integrated residential buildings in different climate zones," Energy, Elsevier, vol. 278(PB).
    14. Bimaganbetova, Madina & Memon, Shazim Ali & Sheriyev, Almas, 2020. "Performance evaluation of phase change materials suitable for cities representing the whole tropical savanna climate region," Renewable Energy, Elsevier, vol. 148(C), pages 402-416.
    15. Wang, Guohui & Yang, Yanan & Wang, Shuxin & Zhang, Hongwei & Wang, Yanhui, 2019. "Efficiency analysis and experimental validation of the ocean thermal energy conversion with phase change material for underwater vehicle," Applied Energy, Elsevier, vol. 248(C), pages 475-488.
    16. Mahdi, Jasim M. & Mohammed, Hayder I. & Hashim, Emad T. & Talebizadehsardari, Pouyan & Nsofor, Emmanuel C., 2020. "Solidification enhancement with multiple PCMs, cascaded metal foam and nanoparticles in the shell-and-tube energy storage system," Applied Energy, Elsevier, vol. 257(C).
    17. Jinghua Yu & Hongyun Yang & Junwei Tao & Jingang Zhao & Yongqiang Luo, 2023. "Performance Evaluation and Optimum Design of Ventilation Roofs with Different Positions of Shape-Stabilized PCM," Sustainability, MDPI, vol. 15(11), pages 1-33, May.
    18. Saafi, Khawla & Daouas, Naouel, 2019. "Energy and cost efficiency of phase change materials integrated in building envelopes under Tunisia Mediterranean climate," Energy, Elsevier, vol. 187(C).
    19. Li, Weilin & Jing, Mingyi & Li, Rufei & Gao, Junxi & Zhu, Jiayin & Li, Ruixin, 2023. "Study of the optimal placement of phase change materials in existing buildings for cooling load reduction - Take the Central Plain of China as an example," Renewable Energy, Elsevier, vol. 209(C), pages 71-84.
    20. Lee, Haksung & Ozaki, Akihito, 2018. "Sensitivity analysis for optimization of renewable-energy-based air-circulation-type temperature-control system," Applied Energy, Elsevier, vol. 230(C), pages 317-329.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:266:y:2020:i:c:s0306261920303986. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.