My bibliography
Save this item
Developments in semi-submersible floating foundations supporting wind turbines: A comprehensive review
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Mareike Leimeister & Athanasios Kolios & Maurizio Collu, 2020. "Development and Verification of an Aero-Hydro-Servo-Elastic Coupled Model of Dynamics for FOWT, Based on the MoWiT Library," Energies, MDPI, vol. 13(8), pages 1-33, April.
- McMorland, J. & Collu, M. & McMillan, D. & Carroll, J., 2022. "Operation and maintenance for floating wind turbines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 163(C).
- Manisha Sawant & Sameer Thakare & A. Prabhakara Rao & Andrés E. Feijóo-Lorenzo & Neeraj Dhanraj Bokde, 2021. "A Review on State-of-the-Art Reviews in Wind-Turbine- and Wind-Farm-Related Topics," Energies, MDPI, vol. 14(8), pages 1-30, April.
- Shengtao Zhou & Baohua Shan & Yiqing Xiao & Chao Li & Gang Hu & Xiaoping Song & Yongqing Liu & Yimin Hu, 2017. "Directionality Effects of Aligned Wind and Wave Loads on a Y-Shape Semi-Submersible Floating Wind Turbine under Rated Operational Conditions," Energies, MDPI, vol. 10(12), pages 1-27, December.
- Papi, F. & Bianchini, A., 2022. "Technical challenges in floating offshore wind turbine upscaling: A critical analysis based on the NREL 5 MW and IEA 15 MW Reference Turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
- Truong, Hoai Vu Anh & Dang, Tri Dung & Vo, Cong Phat & Ahn, Kyoung Kwan, 2022. "Active control strategies for system enhancement and load mitigation of floating offshore wind turbines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 170(C).
- Laura Castro-Santos & Almudena Filgueira-Vizoso & Carlos Álvarez-Feal & Luis Carral, 2018. "Influence of Size on the Economic Feasibility of Floating Offshore Wind Farms," Sustainability, MDPI, vol. 10(12), pages 1-13, November.
- Xiaobin Qu & Yingxue Yao & Jianjun Du, 2021. "Conceptual Design and Hydrodynamic Performance of a Modular Hybrid Floating Foundation," Energies, MDPI, vol. 14(22), pages 1-17, November.
- Gaspar, J.F. & Kamarlouei, M. & Thiebaut, F. & Guedes Soares, C., 2021. "Compensation of a hybrid platform dynamics using wave energy converters in different sea state conditions," Renewable Energy, Elsevier, vol. 177(C), pages 871-883.
- Yang, Can & Cheng, Zhengshun & Xiao, Longfei & Tian, Xinliang & Liu, Mingyue & Wen, Binrong, 2022. "A gradient-descent-based method for design of performance-scaled rotor for floating wind turbine model testing in wave basins," Renewable Energy, Elsevier, vol. 187(C), pages 144-155.
- David M. Skene & Nataliia Sergiienko & Boyin Ding & Benjamin Cazzolato, 2021. "The Prospect of Combining a Point Absorber Wave Energy Converter with a Floating Offshore Wind Turbine," Energies, MDPI, vol. 14(21), pages 1-24, November.
- Srikanth Bashetty & Selahattin Ozcelik, 2021. "Review on Dynamics of Offshore Floating Wind Turbine Platforms," Energies, MDPI, vol. 14(19), pages 1-30, September.
- Daniela Pantusa & Antonio Francone & Giuseppe Roberto Tomasicchio, 2020. "Floating Offshore Renewable Energy Farms. A Life-Cycle Cost Analysis at Brindisi, Italy," Energies, MDPI, vol. 13(22), pages 1-22, November.
- Pustina, L. & Lugni, C. & Bernardini, G. & Serafini, J. & Gennaretti, M., 2020. "Control of power generated by a floating offshore wind turbine perturbed by sea waves," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
- Wang, Xinbao & Cai, Chang & Cai, Shang-Gui & Wang, Tengyuan & Wang, Zekun & Song, Juanjuan & Rong, Xiaomin & Li, Qing'an, 2023. "A review of aerodynamic and wake characteristics of floating offshore wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 175(C).
- Wang, L. & Kolios, A. & Liu, X. & Venetsanos, D. & Rui, C., 2022. "Reliability of offshore wind turbine support structures: A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
- Diego Fernando Bernal-Camacho & Jassiel V. H. Fontes & Edgar Mendoza, 2022. "A Technical Assessment of Offshore Wind Energy in Mexico: A Case Study in Tehuantepec Gulf," Energies, MDPI, vol. 15(12), pages 1-28, June.
- Zhu, Kai & Shi, Hongda & Zheng, Siming & Michele, Simone & Cao, Feifei, 2023. "Hydrodynamic analysis of hybrid system with wind turbine and wave energy converter," Applied Energy, Elsevier, vol. 350(C).
- Wen, Binrong & Tian, Xinliang & Dong, Xingjian & Li, Zhanwei & Peng, Zhike & Zhang, Wenming & Wei, Kexiang, 2020. "Design approaches of performance-scaled rotor for wave basin model tests of floating wind turbines," Renewable Energy, Elsevier, vol. 148(C), pages 573-584.
- Watson, Simon & Moro, Alberto & Reis, Vera & Baniotopoulos, Charalampos & Barth, Stephan & Bartoli, Gianni & Bauer, Florian & Boelman, Elisa & Bosse, Dennis & Cherubini, Antonello & Croce, Alessandro , 2019. "Future emerging technologies in the wind power sector: A European perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
- Jiang, Zhiyu, 2021. "Installation of offshore wind turbines: A technical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
- Ramon Varghese & Vikram Pakrashi & Subhamoy Bhattacharya, 2022. "A Compendium of Formulae for Natural Frequencies of Offshore Wind Turbine Structures," Energies, MDPI, vol. 15(8), pages 1-31, April.
- Yichao Liu & Daoyi Chen & Qian Yi & Sunwei Li, 2017. "Wind Profiles and Wave Spectra for Potential Wind Farms in South China Sea. Part I: Wind Speed Profile Model," Energies, MDPI, vol. 10(1), pages 1-24, January.
- Sang, Le Quang & Takao, Maeda & Kamada, Yasunari & Li, Qing'an, 2017. "Experimental investigation of the cyclic pitch control on a horizontal axis wind turbine in diagonal inflow wind condition," Energy, Elsevier, vol. 134(C), pages 269-278.
- Zhu, Kai & Cao, Feifei & Wang, Tianyuan & Tao, Ji & Wei, Zhiwen & Shi, Hongda, 2024. "A comparative investigation into the dynamic performance of multiple wind-wave hybrid systems utilizing a full-process analytical model," Applied Energy, Elsevier, vol. 360(C).
- Chen, Peng & Kang, Yirou & Xu, Shijie & Liu, Lei & Cheng, Zhengshun, 2024. "Numerical modeling and dynamic response analysis of an integrated semi-submersible floating wind and aquaculture system," Renewable Energy, Elsevier, vol. 225(C).
- Liu, Yichao & Ferrari, Riccardo & Wu, Ping & Jiang, Xiaoli & Li, Sunwei & Wingerden, Jan-Willem van, 2021. "Fault diagnosis of the 10MW Floating Offshore Wind Turbine Benchmark: A mixed model and signal-based approach," Renewable Energy, Elsevier, vol. 164(C), pages 391-406.
- Choe, Do-Eun & Kim, Hyoung-Chul & Kim, Moo-Hyun, 2021. "Sequence-based modeling of deep learning with LSTM and GRU networks for structural damage detection of floating offshore wind turbine blades," Renewable Energy, Elsevier, vol. 174(C), pages 218-235.
- Subbulakshmi, A. & Verma, Mohit & Keerthana, M. & Sasmal, Saptarshi & Harikrishna, P. & Kapuria, Santosh, 2022. "Recent advances in experimental and numerical methods for dynamic analysis of floating offshore wind turbines — An integrated review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
- Thanh Dam Pham & Hyunkyoung Shin, 2019. "A New Conceptual Design and Dynamic Analysis of a Spar-Type Offshore Wind Turbine Combined with a Moonpool," Energies, MDPI, vol. 12(19), pages 1-15, September.
- Yichao Liu & Sunwei Li & Qian Yi & Daoyi Chen, 2017. "Wind Profiles and Wave Spectra for Potential Wind Farms in South China Sea. Part II: Wave Spectrum Model," Energies, MDPI, vol. 10(1), pages 1-24, January.
- Cao, Qun & Xiao, Longfei & Guo, Xiaoxian & Liu, Mingyue, 2020. "Second-order responses of a conceptual semi-submersible 10 MW wind turbine using full quadratic transfer functions," Renewable Energy, Elsevier, vol. 153(C), pages 653-668.
- Chen, Jiahao & Hu, Zhiqiang & Liu, Geliang & Wan, Decheng, 2019. "Coupled aero-hydro-servo-elastic methods for floating wind turbines," Renewable Energy, Elsevier, vol. 130(C), pages 139-153.
- Arabgolarcheh, Alireza & Jannesarahmadi, Sahar & Benini, Ernesto, 2022. "Modeling of near wake characteristics in floating offshore wind turbines using an actuator line method," Renewable Energy, Elsevier, vol. 185(C), pages 871-887.