IDEAS home Printed from https://ideas.repec.org/r/eee/rensus/v13y2009i9p2746-2750.html
   My bibliography  Save this item

Sustainability of photovoltaics: The case for thin-film solar cells

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Ren, Kaipeng & Tang, Xu & Höök, Mikael, 2021. "Evaluating metal constraints for photovoltaics: Perspectives from China’s PV development," Applied Energy, Elsevier, vol. 282(PA).
  2. Zuser, Anton & Rechberger, Helmut, 2011. "Considerations of resource availability in technology development strategies: The case study of photovoltaics," Resources, Conservation & Recycling, Elsevier, vol. 56(1), pages 56-65.
  3. Hu, Xueyue & Wang, Chunying & Elshkaki, Ayman, 2024. "Material-energy Nexus: A systematic literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
  4. Leena Grandell & Mikael Höök, 2015. "Assessing Rare Metal Availability Challenges for Solar Energy Technologies," Sustainability, MDPI, vol. 7(9), pages 1-20, August.
  5. Dinçer, Furkan, 2011. "Overview of the photovoltaic technology status and perspective in Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3768-3779.
  6. Candelise, Chiara & Speirs, Jamie F. & Gross, Robert J.K., 2011. "Materials availability for thin film (TF) PV technologies development: A real concern?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4972-4981.
  7. Peters, Michael & Schmidt, Tobias S. & Wiederkehr, David & Schneider, Malte, 2011. "Shedding light on solar technologies'A techno-economic assessment and its policy implications," Energy Policy, Elsevier, vol. 39(10), pages 6422-6439, October.
  8. Rowlands, Ian H. & Kemery, Briana Paige & Beausoleil-Morrison, Ian, 2014. "Managing solar-PV variability with geographical dispersion: An Ontario (Canada) case-study," Renewable Energy, Elsevier, vol. 68(C), pages 171-180.
  9. Liang, Yanan & Kleijn, René & Tukker, Arnold & van der Voet, Ester, 2022. "Material requirements for low-carbon energy technologies: A quantitative review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
  10. Moslehi, Salim & Reddy, T. Agami, 2019. "A new quantitative life cycle sustainability assessment framework: Application to integrated energy systems," Applied Energy, Elsevier, vol. 239(C), pages 482-493.
  11. Ugo Bardi, 2016. "What Future for the Anthropocene? A Biophysical Interpretation," Biophysical Economics and Resource Quality, Springer, vol. 1(1), pages 1-7, August.
  12. Chin, Vun Jack & Salam, Zainal & Ishaque, Kashif, 2015. "Cell modelling and model parameters estimation techniques for photovoltaic simulator application: A review," Applied Energy, Elsevier, vol. 154(C), pages 500-519.
  13. Martin David & Florian Koch, 2019. "“Smart Is Not Smart Enough!” Anticipating Critical Raw Material Use in Smart City Concepts: The Example of Smart Grids," Sustainability, MDPI, vol. 11(16), pages 1-11, August.
  14. Fthenakis, Vasilis & Athias, Clement & Blumenthal, Alyssa & Kulur, Aylin & Magliozzo, Julia & Ng, David, 2020. "Sustainability evaluation of CdTe PV: An update," Renewable and Sustainable Energy Reviews, Elsevier, vol. 123(C).
  15. Phillips, Jason, 2013. "Determining the sustainability of large-scale photovoltaic solar power plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 435-444.
  16. Ravikumar, Dwarakanath & Malghan, Deepak, 2013. "Material constraints for indigenous production of CdTe PV: Evidence from a Monte Carlo experiment using India's National Solar Mission Benchmarks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 393-403.
  17. Elshkaki, Ayman & Shen, Lei, 2019. "Energy-material nexus: The impacts of national and international energy scenarios on critical metals use in China up to 2050 and their global implications," Energy, Elsevier, vol. 180(C), pages 903-917.
  18. Goe, Michele & Gaustad, Gabrielle, 2014. "Identifying critical materials for photovoltaics in the US: A multi-metric approach," Applied Energy, Elsevier, vol. 123(C), pages 387-396.
  19. Sener, Can & Fthenakis, Vasilis, 2014. "Energy policy and financing options to achieve solar energy grid penetration targets: Accounting for external costs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 854-868.
  20. Bravi, Mirko & Parisi, Maria Laura & Tiezzi, Enzo & Basosi, Riccardo, 2011. "Life cycle assessment of a micromorph photovoltaic system," Energy, Elsevier, vol. 36(7), pages 4297-4306.
  21. Kleijn, Rene & van der Voet, Ester, 2010. "Resource constraints in a hydrogen economy based on renewable energy sources: An exploration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 2784-2795, December.
  22. Marwede, Max & Reller, Armin, 2012. "Future recycling flows of tellurium from cadmium telluride photovoltaic waste," Resources, Conservation & Recycling, Elsevier, vol. 69(C), pages 35-49.
  23. Elshkaki, Ayman & Graedel, T.E., 2015. "Solar cell metals and their hosts: A tale of oversupply and undersupply," Applied Energy, Elsevier, vol. 158(C), pages 167-177.
  24. Alessandro Romeo & Elisa Artegiani, 2021. "CdTe-Based Thin Film Solar Cells: Past, Present and Future," Energies, MDPI, vol. 14(6), pages 1-24, March.
  25. Dadouche, F. & Béthoux, O. & Kleider, J.-P., 2011. "New silicon thin-film technology associated with original DC–DC converter: An economic alternative way to improve photovoltaic systems efficiencies," Energy, Elsevier, vol. 36(3), pages 1749-1757.
  26. Husain, Alaa A.F. & Hasan, Wan Zuha W. & Shafie, Suhaidi & Hamidon, Mohd N. & Pandey, Shyam Sudhir, 2018. "A review of transparent solar photovoltaic technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 779-791.
  27. Marwede, Max & Berger, Wolfgang & Schlummer, Martin & Mäurer, Andreas & Reller, Armin, 2013. "Recycling paths for thin-film chalcogenide photovoltaic waste – Current feasible processes," Renewable Energy, Elsevier, vol. 55(C), pages 220-229.
  28. Jenni Ylä-Mella & Eva Pongrácz, 2016. "Drivers and Constraints of Critical Materials Recycling: The Case of Indium," Resources, MDPI, vol. 5(4), pages 1-12, November.
  29. Nassar, Nedal T. & Wilburn, David R. & Goonan, Thomas G., 2016. "Byproduct metal requirements for U.S. wind and solar photovoltaic electricity generation up to the year 2040 under various Clean Power Plan scenarios," Applied Energy, Elsevier, vol. 183(C), pages 1209-1226.
  30. Zubi, Ghassan, 2011. "Technology mix alternatives with high shares of wind power and photovoltaics—case study for Spain," Energy Policy, Elsevier, vol. 39(12), pages 8070-8077.
  31. Laleman, Ruben & Albrecht, Johan & Dewulf, Jo, 2011. "Life Cycle Analysis to estimate the environmental impact of residential photovoltaic systems in regions with a low solar irradiation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 267-281, January.
  32. Valero, Alicia & Valero, Antonio & Calvo, Guiomar & Ortego, Abel, 2018. "Material bottlenecks in the future development of green technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 178-200.
  33. Till Zimmermann & Stefan Gößling-Reisemann, 2014. "Recycling Potentials of Critical Metals-Analyzing Secondary Flows from Selected Applications," Resources, MDPI, vol. 3(1), pages 1-28, March.
  34. Arcos-Vargas, Angel & Cansino, José M. & Román-Collado, Rocío, 2018. "Economic and environmental analysis of a residential PV system: A profitable contribution to the Paris agreement," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 1024-1035.
  35. Speirs, Jamie & McGlade, Christophe & Slade, Raphael, 2015. "Uncertainty in the availability of natural resources: Fossil fuels, critical metals and biomass," Energy Policy, Elsevier, vol. 87(C), pages 654-664.
  36. Fizaine, Florian, 2013. "Byproduct production of minor metals: Threat or opportunity for the development of clean technologies? The PV sector as an illustration," Resources Policy, Elsevier, vol. 38(3), pages 373-383.
  37. Gerbinet, Saïcha & Belboom, Sandra & Léonard, Angélique, 2014. "Life Cycle Analysis (LCA) of photovoltaic panels: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 747-753.
  38. Jiashu Kong & Yitong Dong & Aravind Poshnath & Behzad Rismanchi & Pow-Seng Yap, 2023. "Application of Building Integrated Photovoltaic (BIPV) in Net-Zero Energy Buildings (NZEBs)," Energies, MDPI, vol. 16(17), pages 1-26, September.
  39. Raugei, Marco & Fthenakis, Vasilis, 2010. "Cadmium flows and emissions from CdTe PV: future expectations," Energy Policy, Elsevier, vol. 38(9), pages 5223-5228, September.
  40. Jinjian Cao & Chul Hun Choi & Fu Zhao, 2021. "Agent-Based Modeling for By-Product Metal Supply—A Case Study on Indium," Sustainability, MDPI, vol. 13(14), pages 1-28, July.
  41. Jones, Ben & Elliott, Robert J.R. & Nguyen-Tien, Viet, 2020. "The EV revolution: The road ahead for critical raw materials demand," Applied Energy, Elsevier, vol. 280(C).
  42. Peng, Jinqing & Lu, Lin & Yang, Hongxing, 2013. "Review on life cycle assessment of energy payback and greenhouse gas emission of solar photovoltaic systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 255-274.
  43. Krystian Siczek & Krzysztof Siczek & Piotr Piersa & Łukasz Adrian & Szymon Szufa & Andrzej Obraniak & Przemysław Kubiak & Wojciech Zakrzewicz & Grzegorz Bogusławski, 2020. "The Comparative Study on the Li-S and Li-ion Batteries Cooperating with the Photovoltaic Array," Energies, MDPI, vol. 13(19), pages 1-24, October.
  44. Songi Kim & Bongju Jeong, 2016. "Closed-Loop Supply Chain Planning Model for a Photovoltaic System Manufacturer with Internal and External Recycling," Sustainability, MDPI, vol. 8(7), pages 1-17, June.
  45. Cha, Kyounghoon & Son, Minjung & Matsuno, Yasunari & Fthenakis, Vasilis & Hur, Tak, 2013. "Substance flow analysis of cadmium in Korea," Resources, Conservation & Recycling, Elsevier, vol. 71(C), pages 31-39.
  46. Michael Redlinger & Roderick Eggert & Michael Woodhouse, 2014. "Evaluating the Availability of Gallium, Indium, and Tellurium from Recycled Photovoltaic Modules," Working Papers 2014-09, Colorado School of Mines, Division of Economics and Business.
  47. Stamp, Anna & Wäger, Patrick A. & Hellweg, Stefanie, 2014. "Linking energy scenarios with metal demand modeling–The case of indium in CIGS solar cells," Resources, Conservation & Recycling, Elsevier, vol. 93(C), pages 156-167.
  48. Choi, Chul Hun & Cao, Jinjian & Zhao, Fu, 2016. "System Dynamics Modeling of Indium Material Flows under Wide Deployment of Clean Energy Technologies," Resources, Conservation & Recycling, Elsevier, vol. 114(C), pages 59-71.
  49. Davidsson, Simon & Höök, Mikael, 2017. "Material requirements and availability for multi-terawatt deployment of photovoltaics," Energy Policy, Elsevier, vol. 108(C), pages 574-582.
  50. Steinbuks, Jevgenijs & Satija, Gaurav & Zhao, Fu, 2015. "Sustainability of solar electricity : the role of endogenous resource substitution and market mediated responses," Policy Research Working Paper Series 7178, The World Bank.
  51. Sofia-Despoina Papadopoulou & Niki Kalaitzoglou & Maria Psarra & Sideri Lefkeli & Evangelia Karasmanaki & Georgios Tsantopoulos, 2019. "Addressing Energy Poverty through Transitioning to a Carbon-Free Environment," Sustainability, MDPI, vol. 11(9), pages 1-17, May.
  52. Lloyd, Bob & Forest, Andrew S., 2010. "The transition to renewables: Can PV provide an answer to the peak oil and climate change challenges?," Energy Policy, Elsevier, vol. 38(11), pages 7378-7394, November.
  53. Vincent Moreau & Piero Carlo Dos Reis & François Vuille, 2019. "Enough Metals? Resource Constraints to Supply a Fully Renewable Energy System," Resources, MDPI, vol. 8(1), pages 1-18, January.
  54. Kavlak, Goksin & Graedel, T.E., 2013. "Global anthropogenic tellurium cycles for 1940–2010," Resources, Conservation & Recycling, Elsevier, vol. 76(C), pages 21-26.
  55. Steinbuks, Jevgenijs & Satija, Gaurav & Zhao, Fu, 2017. "Sustainability of solar electricity: The role of endogenous resource substitution and cross-sectoral responses," Resource and Energy Economics, Elsevier, vol. 49(C), pages 218-232.
  56. Bustamante, Michele L. & Gaustad, Gabrielle, 2014. "Challenges in assessment of clean energy supply-chains based on byproduct minerals: A case study of tellurium use in thin film photovoltaics," Applied Energy, Elsevier, vol. 123(C), pages 397-414.
  57. Asim, Nilofar & Sopian, Kamaruzzaman & Ahmadi, Shideh & Saeedfar, Kasra & Alghoul, M.A. & Saadatian, Omidreza & Zaidi, Saleem H., 2012. "A review on the role of materials science in solar cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5834-5847.
  58. Renata Włodarczyk, 2022. "Analysis of the Photovoltaic Waste-Recycling Process in Polish Conditions—A Short Review," Sustainability, MDPI, vol. 14(8), pages 1-21, April.
  59. Frenzel, Max & Tolosana-Delgado, Raimon & Gutzmer, Jens, 2015. "Assessing the supply potential of high-tech metals – A general method," Resources Policy, Elsevier, vol. 46(P2), pages 45-58.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.