My bibliography
Save this item
Energy efficiency analysis and off-design analysis of two different discharge modes for compressed air energy storage system using axial turbines
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Guo, Huan & Xu, Yujie & Kang, Haoyuan & Guo, Wenbing & Liu, Yu & Zhang, Xinjing & Zhou, Xuezhi & Chen, Haisheng, 2023. "From theory to practice: Evaluating the thermodynamic design landscape of compressed air energy storage systems," Applied Energy, Elsevier, vol. 352(C).
- Shang Chen & Ahmad Arabkoohsar & Guodong Chen & Mads Pagh Nielsen, 2022. "Optimization of a Hybrid Energy System with District Heating and Cooling Considering Off-Design Characteristics of Components, an Effort on Optimal Compressed Air Energy Storage Integration," Energies, MDPI, vol. 15(13), pages 1-21, June.
- Wang, Xing & Li, Wen & Zhang, Xuehui & Zhu, Yangli & Zuo, Zhitao & Chen, Haisheng, 2019. "Efficiency improvement of a CAES low aspect ratio radial inflow turbine by NACA blade profile," Renewable Energy, Elsevier, vol. 138(C), pages 1214-1231.
- Ma, Xin & Zhang, Chenghui & Li, Ke & Li, Fan & Wang, Haiyang & Chen, Jianfei, 2020. "Optimal dispatching strategy of regional micro energy system with compressed air energy storage," Energy, Elsevier, vol. 212(C).
- Gaurav Chaudhary & Jacob J. Lamb & Odne S. Burheim & Bjørn Austbø, 2021. "Review of Energy Storage and Energy Management System Control Strategies in Microgrids," Energies, MDPI, vol. 14(16), pages 1-26, August.
- Cummins, Joshua J. & Nash, Christopher J. & Thomas, Seth & Justice, Aaron & Mahadevan, Sankaran & Adams, Douglas E. & Barth, Eric J., 2017. "Energy conservation in industrial pneumatics: A state model for predicting energetic savings using a novel pneumatic strain energy accumulator," Applied Energy, Elsevier, vol. 198(C), pages 239-249.
- Nie, Pu-yan & Yang, Yong-cong & Chen, You-hua & Wang, Zhao-hui, 2016. "How to subsidize energy efficiency under duopoly efficiently?," Applied Energy, Elsevier, vol. 175(C), pages 31-39.
- He, Yang & MengWang, & Chen, Haisheng & Xu, Yujie & Deng, Jianqiang, 2021. "Thermodynamic research on compressed air energy storage system with turbines under sliding pressure operation," Energy, Elsevier, vol. 222(C).
- Guo, Huan & Xu, Yujie & Chen, Haisheng & Guo, Cong & Qin, Wei, 2017. "Thermodynamic analytical solution and exergy analysis for supercritical compressed air energy storage system," Applied Energy, Elsevier, vol. 199(C), pages 96-106.
- Guney, Mukrimin Sevket & Tepe, Yalcin, 2017. "Classification and assessment of energy storage systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 1187-1197.
- Zhang, Yuan & Yang, Ke & Hong, Hui & Zhong, Xiaohui & Xu, Jianzhong, 2016. "Thermodynamic analysis of a novel energy storage system with carbon dioxide as working fluid," Renewable Energy, Elsevier, vol. 99(C), pages 682-697.
- Guo, Huan & Xu, Yujie & Chen, Haisheng & Zhang, Xinjing & Qin, Wei, 2018. "Corresponding-point methodology for physical energy storage system analysis and application to compressed air energy storage system," Energy, Elsevier, vol. 143(C), pages 772-784.
- Zhao, Tian & Chen, Xi & He, Ke-Lun & Chen, Qun, 2021. "A hierarchical and categorized algorithm for efficient and robust simulation of thermal systems based on the heat current method," Energy, Elsevier, vol. 215(PA).
- Tong, Shuiguang & Cheng, Zhewu & Cong, Feiyun & Tong, Zheming & Zhang, Yidong, 2018. "Developing a grid-connected power optimization strategy for the integration of wind power with low-temperature adiabatic compressed air energy storage," Renewable Energy, Elsevier, vol. 125(C), pages 73-86.
- Chen, Xi & Chen, Qun & Chen, Hong & Xu, Ying-Gen & Zhao, Tian & Hu, Kang & He, Ke-Lun, 2019. "Heat current method for analysis and optimization of heat recovery-based power generation systems," Energy, Elsevier, vol. 189(C).
- Steinmann, Wolf-Dieter, 2017. "Thermo-mechanical concepts for bulk energy storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 205-219.
- Xu, Wenpan & Zhao, Pan & Gou, Feifei & Liu, Aijie & Wu, Wenze & Wang, Jiangfeng, 2022. "Thermo-economic analysis of a combined cooling, heating and power system based on self-evaporating liquid carbon dioxide energy storage," Applied Energy, Elsevier, vol. 326(C).
- Vecchi, Andrea & Li, Yongliang & Mancarella, Pierluigi & Sciacovelli, Adriano, 2020. "Integrated techno-economic assessment of Liquid Air Energy Storage (LAES) under off-design conditions: Links between provision of market services and thermodynamic performance," Applied Energy, Elsevier, vol. 262(C).
- Guo, Chaobin & Zhang, Keni & Li, Cai & Wang, Xiaoyu, 2016. "Modelling studies for influence factors of gas bubble in compressed air energy storage in aquifers," Energy, Elsevier, vol. 107(C), pages 48-59.
- Tong, Zheming & Cheng, Zhewu & Tong, Shuiguang, 2021. "A review on the development of compressed air energy storage in China: Technical and economic challenges to commercialization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
- Wang, Peizi & Zhao, Pan & Wang, Jiangfeng & Dai, Yiping, 2020. "Performance evaluation of a combined heat and compressed air energy storage system integrated with ORC for scaling up storage capacity purpose," Energy, Elsevier, vol. 190(C).
- Bai, Jiayu & Liu, Feng & Xue, Xiaodai & Wei, Wei & Chen, Laijun & Wang, Guohua & Mei, Shengwei, 2021. "Modelling and control of advanced adiabatic compressed air energy storage under power tracking mode considering off-design generating conditions," Energy, Elsevier, vol. 218(C).
- Sciacovelli, Adriano & Li, Yongliang & Chen, Haisheng & Wu, Yuting & Wang, Jihong & Garvey, Seamus & Ding, Yulong, 2017. "Dynamic simulation of Adiabatic Compressed Air Energy Storage (A-CAES) plant with integrated thermal storage – Link between components performance and plant performance," Applied Energy, Elsevier, vol. 185(P1), pages 16-28.
- Marcin Kopiczko & Jaroslaw Jaworski, 2021. "Characteristics of the Parameters of Lithium Iron Phosphate Energy Storage in the Context of their Usefulness in the Management of Distribution Grid," European Research Studies Journal, European Research Studies Journal, vol. 0(3B), pages 817-826.
- Bai, Jiayu & Wei, Wei & Chen, Laijun & Mei, Shengwei, 2020. "Modeling and dispatch of advanced adiabatic compressed air energy storage under wide operating range in distribution systems with renewable generation," Energy, Elsevier, vol. 206(C).
- Yan, Yi & Zhang, Chenghui & Li, Ke & Wang, Zhen, 2018. "An integrated design for hybrid combined cooling, heating and power system with compressed air energy storage," Applied Energy, Elsevier, vol. 210(C), pages 1151-1166.
- Damdoum, Amel & Slama-Belkhodja, Ilhem & Pietrzak-David, Maria & Debbou, Mustapha, 2016. "Low voltage ride-through strategies for doubly fed induction machine pumped storage system under grid faults," Renewable Energy, Elsevier, vol. 95(C), pages 248-262.
- Huang, Qingxi & Feng, Biao & Liu, Shengchun & Ma, Cuiping & Li, Hailong & Sun, Qie, 2023. "Dynamic operating characteristics of a compressed CO2 energy storage system," Applied Energy, Elsevier, vol. 341(C).
- Zhang, Yuan & Shen, Xiajie & Tian, Zhen & Kan, Ankang & Gao, Wenzhong & Yang, Ke, 2023. "A step towards dynamic: An investigation on a carbon dioxide binary mixtures based compressed gas energy storage system using energy and exergy analysis," Energy, Elsevier, vol. 282(C).
- Chen, Hao & Wang, Huanran & Li, Ruixiong & Sun, Hao & Ge, Gangqiang & Ling, Lanning, 2022. "Experimental and analytical investigation of near-isothermal pumped hydro-compressed air energy storage system," Energy, Elsevier, vol. 249(C).
- Arabkoohsar, Ahmad & Rahrabi, Hamid Reza & Alsagri, Ali Sulaiman & Alrobaian, Abdulrahman A., 2020. "Impact of Off-design operation on the effectiveness of a low-temperature compressed air energy storage system," Energy, Elsevier, vol. 197(C).
- He, Wei & Wang, Jihong, 2018. "Optimal selection of air expansion machine in Compressed Air Energy Storage: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 87(C), pages 77-95.
- Han, Zhonghe & Guo, Senchuang, 2018. "Investigation of operation strategy of combined cooling, heating and power(CCHP) system based on advanced adiabatic compressed air energy storage," Energy, Elsevier, vol. 160(C), pages 290-308.
- Sun, Yang & Yao, Yuting & Yan, Min & Liu, Jiaming & Li, Haimiao & Bao, Yan & Lu, Mingwei, 2019. "Energy conversion efficiency from low-head water to high-pressure gas," Renewable Energy, Elsevier, vol. 138(C), pages 1-10.
- Meng, Hui & Wang, Meihong & Olumayegun, Olumide & Luo, Xiaobo & Liu, Xiaoyan, 2019. "Process design, operation and economic evaluation of compressed air energy storage (CAES) for wind power through modelling and simulation," Renewable Energy, Elsevier, vol. 136(C), pages 923-936.
- Zhou, Shenghui & He, Yang & Chen, Haisheng & Xu, Yujie & Deng, Jianqiang, 2020. "Performance analysis of a novel adiabatic compressed air energy system with ejectors enhanced charging process," Energy, Elsevier, vol. 205(C).