IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v326y2022ics0306261922012892.html
   My bibliography  Save this article

Thermo-economic analysis of a combined cooling, heating and power system based on self-evaporating liquid carbon dioxide energy storage

Author

Listed:
  • Xu, Wenpan
  • Zhao, Pan
  • Gou, Feifei
  • Liu, Aijie
  • Wu, Wenze
  • Wang, Jiangfeng

Abstract

Renewable energy will play the hard core in the future energy consumption structure. However, presently, the penetration rate of renewable electricity in power grid is put to limit by the nature of intermittent and volatile. Compressed carbon dioxide energy storage is a promising way to smoothen the fluctuations. In order to realize the evaporation process without heat source in charging process and satisfy the diversified energy demands, a combined cooling, heating and power system based on liquid carbon dioxide energy storage system was proposed in this paper. An ejector refrigeration cycle was coupled to recycle the waste heat, and a self-evaporating method was presented on the basis of flash distillation. Parametric analysis was carried out to evaluate the influence of several key parameters on system’s thermal and economic performances. Results indicated that the roundtrip efficiency and energy density of the system were 64.97% and 17.46 kWh/m3 under design conditions. Besides, increasing the turbine inlet parameters improved the system efficiencies and amplified the system storage capacity prominently, but it had negative effect on the cooling power. The optimum value of low pressure storage tank was around critical point in terms of system thermal efficiency and heating power, while entrainment ratio dominated the behavior of the cooling power. Moreover, economic performance of the proposed system was advantageous in the large-scale energy storage systems.

Suggested Citation

  • Xu, Wenpan & Zhao, Pan & Gou, Feifei & Liu, Aijie & Wu, Wenze & Wang, Jiangfeng, 2022. "Thermo-economic analysis of a combined cooling, heating and power system based on self-evaporating liquid carbon dioxide energy storage," Applied Energy, Elsevier, vol. 326(C).
  • Handle: RePEc:eee:appene:v:326:y:2022:i:c:s0306261922012892
    DOI: 10.1016/j.apenergy.2022.120032
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261922012892
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2022.120032?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Borri, Emiliano & Tafone, Alessio & Romagnoli, Alessandro & Comodi, Gabriele, 2021. "A review on liquid air energy storage: History, state of the art and recent developments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    2. Courtois, Nicolas & Najafiyazdi, Mostafa & Lotfalian, Reza & Boudreault, Richard & Picard, Mathieu, 2021. "Analytical expression for the evaluation of multi-stage adiabatic-compressed air energy storage (A-CAES) systems cycle efficiency," Applied Energy, Elsevier, vol. 288(C).
    3. Li, Huabin & Tao, Ye & Zhang, Yang & Fu, Hong, 2022. "Two-objective optimization of a hybrid solar-geothermal system with thermal energy storage for power, hydrogen and freshwater production based on transcritical CO2 cycle," Renewable Energy, Elsevier, vol. 183(C), pages 51-66.
    4. Chen, Kang & Zheng, Shaoxiong & Du, Yang & Fan, Gang & Dai, Yiping & Chen, Haichao, 2021. "Thermodynamic and economic comparison of novel parallel and serial combined cooling and power systems based on sCO2 cycle," Energy, Elsevier, vol. 215(PA).
    5. He, Qing & Liu, Hui & Hao, Yinping & Liu, Yaning & Liu, Wenyi, 2018. "Thermodynamic analysis of a novel supercritical compressed carbon dioxide energy storage system through advanced exergy analysis," Renewable Energy, Elsevier, vol. 127(C), pages 835-849.
    6. Cheng, Ying & Liu, Mingbo & Chen, Honglin & Yang, Ziwei, 2021. "Optimization of multi-carrier energy system based on new operation mechanism modelling of power-to-gas integrated with CO2-based electrothermal energy storage," Energy, Elsevier, vol. 216(C).
    7. Qi, Meng & Park, Jinwoo & Landon, Robert Stephen & Kim, Jeongdong & Liu, Yi & Moon, Il, 2022. "Continuous and flexible Renewable-Power-to-Methane via liquid CO2 energy storage: Revisiting the techno-economic potential," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    8. Wang, Xurong & Dai, Yiping, 2016. "Exergoeconomic analysis of utilizing the transcritical CO2 cycle and the ORC for a recompression supercritical CO2 cycle waste heat recovery: A comparative study," Applied Energy, Elsevier, vol. 170(C), pages 193-207.
    9. Zhao, Pan & Gao, Lin & Wang, Jiangfeng & Dai, Yiping, 2016. "Energy efficiency analysis and off-design analysis of two different discharge modes for compressed air energy storage system using axial turbines," Renewable Energy, Elsevier, vol. 85(C), pages 1164-1177.
    10. Li, Yi & Yu, Hao & Tang, Dong & Li, Yi & Zhang, Guijin & Liu, Yaning, 2022. "A comparison of compressed carbon dioxide energy storage and compressed air energy storage in aquifers using numerical methods," Renewable Energy, Elsevier, vol. 187(C), pages 1130-1153.
    11. Du, Ruxue & He, Yang & Chen, Haisheng & Xu, Yujie & Li, Wen & Deng, Jianqiang, 2022. "Performance and economy of trigenerative adiabatic compressed air energy storage system based on multi-parameter analysis," Energy, Elsevier, vol. 238(PA).
    12. Liu, Zhan & Liu, Zihui & Cao, Xing & Li, Hailong & Yang, Xiaohu, 2020. "Self-condensing transcritical CO2 cogeneration system with extraction turbine and ejector refrigeration cycle: A techno-economic assessment study," Energy, Elsevier, vol. 208(C).
    13. Mercangöz, Mehmet & Hemrle, Jaroslav & Kaufmann, Lilian & Z’Graggen, Andreas & Ohler, Christian, 2012. "Electrothermal energy storage with transcritical CO2 cycles," Energy, Elsevier, vol. 45(1), pages 407-415.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Ke & Cui, Qian & Liu, Yixue & He, Qing, 2024. "Performance analysis of a novel isothermal compressed carbon dioxide energy storage system integrated with solar thermal storage," Energy, Elsevier, vol. 303(C).
    2. Fu, Xintao & Yan, Xuewen & Liu, Zhan, 2023. "Coupling thermodynamics and economics of liquid CO2 energy storage system with refrigerant additives," Energy, Elsevier, vol. 284(C).
    3. He, Tianyu & Cao, Yue & Si, Fengqi & Chua, Kian Jon, 2024. "Off-design characteristics and operation strategy analysis of a compressed carbon dioxide energy storage system coupled with a combined heating and power plant," Energy, Elsevier, vol. 303(C).
    4. Dewevre, Florent & Lacroix, Clément & Loubar, Khaled & Poncet, Sébastien, 2024. "Carbon dioxide energy storage systems: Current researches and perspectives," Renewable Energy, Elsevier, vol. 224(C).
    5. Zhang, Weifeng & Ding, Jialu & Yin, Suzhen & Zhang, Fangyuan & Zhang, Yao & Liu, Zhan, 2024. "Thermo-economic optimization of an artificial cavern compressed air energy storage with CO2 pressure stabilizing unit," Energy, Elsevier, vol. 294(C).
    6. Tang, Junrong & Li, Qibin & Werle, Sebastian & Wang, Shukun & Yu, Haoshui, 2024. "Development and comprehensive thermo-economic analysis of a novel compressed CO2 energy storage system integrated with high-temperature thermal energy storage," Energy, Elsevier, vol. 303(C).
    7. Tian, Zhen & Zhou, Yihang & Zhang, Yuan & Gao, Wenzhong, 2024. "Design principle, 4E analyses and optimization for onboard CCS system under EEDI framework: A case study of an LNG-fueled bulk carrier," Energy, Elsevier, vol. 295(C).
    8. Fu, Yidan & Cai, Lei & Qi, Chenyu & Zhai, Jiangfeng, 2024. "Thermodynamic and economic analyses of the biomass gasification Allam cycle integrated with compressed carbon energy storage," Energy, Elsevier, vol. 303(C).
    9. Wan, Yuke & Wu, Chuang & Liu, Yu & Liu, Chao & Li, Hang & Wang, Jiangfeng, 2023. "A technical feasibility study of a liquid carbon dioxide energy storage system: Integrated component design and off-design performance analysis," Applied Energy, Elsevier, vol. 350(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qi, Meng & Park, Jinwoo & Lee, Inkyu & Moon, Il, 2022. "Liquid air as an emerging energy vector towards carbon neutrality: A multi-scale systems perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    2. Fu, Xintao & Zhang, Yilun & Liu, Xu & Liu, Zhan, 2024. "Stable power supply system consisting of solar, wind and liquid carbon dioxide energy storage," Renewable Energy, Elsevier, vol. 221(C).
    3. Fu, Xintao & Yan, Xuewen & Liu, Zhan, 2023. "Coupling thermodynamics and economics of liquid CO2 energy storage system with refrigerant additives," Energy, Elsevier, vol. 284(C).
    4. Zhang, Yuan & Yang, Ke & Hong, Hui & Zhong, Xiaohui & Xu, Jianzhong, 2016. "Thermodynamic analysis of a novel energy storage system with carbon dioxide as working fluid," Renewable Energy, Elsevier, vol. 99(C), pages 682-697.
    5. Guo, Huan & Xu, Yujie & Huang, Lujing & Zhu, Yilin & Liang, Qi & Chen, Haisheng, 2022. "Concise analytical solution and optimization of compressed air energy storage systems with thermal storage," Energy, Elsevier, vol. 258(C).
    6. Li, Yi & Yu, Hao & Li, Yi & Tang, Dong & Zhang, Guijin & Liu, Yaning, 2024. "Study on the applicability of compressed carbon dioxide energy storage in aquifers under different daily and weekly cycles," Renewable Energy, Elsevier, vol. 222(C).
    7. Sun, Lei & Tang, Bo & Xie, Yonghui, 2022. "Performance assessment of two compressed and liquid carbon dioxide energy storage systems: Thermodynamic, exergoeconomic analysis and multi-objective optimization," Energy, Elsevier, vol. 256(C).
    8. Dewevre, Florent & Lacroix, Clément & Loubar, Khaled & Poncet, Sébastien, 2024. "Carbon dioxide energy storage systems: Current researches and perspectives," Renewable Energy, Elsevier, vol. 224(C).
    9. He, Xin & Wang, Huanran & Li, Ruixiong & Sun, Hao & Chen, Hao & Li, ChengChen & Ge, Gangqiang & Tao, Feiyue, 2022. "Thermo-conversion of a physical energy storage system with high-energy density: Combination of thermal energy storage and gas-steam combined cycle," Energy, Elsevier, vol. 239(PE).
    10. Xiao, Runke & Yang, Cheng & Qi, Hanjie & Ma, Xiaoqian, 2023. "Synergetic performance of gas turbine combined cycle unit with inlet cooled by quasi-isobaric ACAES exhaust," Applied Energy, Elsevier, vol. 352(C).
    11. Qi, Meng & Vo, Dat Nguyen & Yu, Haoshui & Shu, Chi-Min & Cui, Chengtian & Liu, Yi & Park, Jinwoo & Moon, Il, 2023. "Strategies for flexible operation of power-to-X processes coupled with renewables," Renewable and Sustainable Energy Reviews, Elsevier, vol. 179(C).
    12. He, Xin & Li, ChengChen & Wang, Huanran, 2022. "Thermodynamics analysis of a combined cooling, heating and power system integrating compressed air energy storage and gas-steam combined cycle," Energy, Elsevier, vol. 260(C).
    13. Qi, Meng & Kim, Minsu & Dat Vo, Nguyen & Yin, Liang & Liu, Yi & Park, Jinwoo & Moon, Il, 2022. "Proposal and surrogate-based cost-optimal design of an innovative green ammonia and electricity co-production system via liquid air energy storage," Applied Energy, Elsevier, vol. 314(C).
    14. Steinmann, Wolf-Dieter, 2017. "Thermo-mechanical concepts for bulk energy storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 205-219.
    15. Seyed Mohammad Seyed Mahmoudi & Ramin Ghiami Sardroud & Mohsen Sadeghi & Marc A. Rosen, 2022. "Integration of Supercritical CO 2 Recompression Brayton Cycle with Organic Rankine/Flash and Kalina Cycles: Thermoeconomic Comparison," Sustainability, MDPI, vol. 14(14), pages 1-29, July.
    16. Zhihan Shi & Weisong Han & Guangming Zhang & Zhiqing Bai & Mingxiang Zhu & Xiaodong Lv, 2022. "Research on Low-Carbon Energy Sharing through the Alliance of Integrated Energy Systems with Multiple Uncertainties," Energies, MDPI, vol. 15(24), pages 1-20, December.
    17. Qian, Xiaoyan & Dai, Jie & Jiang, Weimin & Cai, Helen & Ye, Xixi & Shahab Vafadaran, Mohammad, 2024. "Economic viability and investment returns of innovative geothermal tri-generation systems: A comparative study," Renewable Energy, Elsevier, vol. 226(C).
    18. Cao, Yan & Dhahad, Hayder A. & Alsharif, Sameer & Sharma, Kamal & El.Shafy, Asem Saleh & Farhang, Babak & Mohammed, Adil Hussein, 2022. "Multi-objective optimizations and exergoeconomic analyses of a high-efficient bi-evaporator multigeneration system with freshwater unit," Renewable Energy, Elsevier, vol. 191(C), pages 699-714.
    19. Tafone, Alessio & Borri, Emiliano & Cabeza, Luisa F. & Romagnoli, Alessandro, 2021. "Innovative cryogenic Phase Change Material (PCM) based cold thermal energy storage for Liquid Air Energy Storage (LAES) – Numerical dynamic modelling and experimental study of a packed bed unit," Applied Energy, Elsevier, vol. 301(C).
    20. Bai, Jiayu & Wei, Wei & Chen, Laijun & Mei, Shengwei, 2020. "Modeling and dispatch of advanced adiabatic compressed air energy storage under wide operating range in distribution systems with renewable generation," Energy, Elsevier, vol. 206(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:326:y:2022:i:c:s0306261922012892. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.