IDEAS home Printed from https://ideas.repec.org/r/eee/renene/v35y2010i12p2781-2791.html
   My bibliography  Save this item

Power output variations of co-located offshore wind turbines and wave energy converters in California

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Gao, Qiang & Khan, Salman Saeed & Sergiienko, Nataliia & Ertugrul, Nesimi & Hemer, Mark & Negnevitsky, Michael & Ding, Boyin, 2022. "Assessment of wind and wave power characteristic and potential for hybrid exploration in Australia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
  2. Bozzi, Silvia & Archetti, Renata & Passoni, Giuseppe, 2014. "Wave electricity production in Italian offshore: A preliminary investigation," Renewable Energy, Elsevier, vol. 62(C), pages 407-416.
  3. Liguo, Xin & Ahmad, Manzoor & Khattak, Shoukat Iqbal, 2022. "Impact of innovation in marine energy generation, distribution, or transmission-related technologies on carbon dioxide emissions in the United States," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
  4. Astariz, S. & Iglesias, G., 2016. "Output power smoothing and reduced downtime period by combined wind and wave energy farms," Energy, Elsevier, vol. 97(C), pages 69-81.
  5. Natalia Gonzalez & Paul Serna-Torre & Pedro A. Sánchez-Pérez & Ryan Davidson & Bryan Murray & Martin Staadecker & Julia Szinai & Rachel Wei & Daniel M. Kammen & Deborah A. Sunter & Patricia Hidalgo-Go, 2024. "Offshore wind and wave energy can reduce total installed capacity required in zero-emissions grids," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
  6. Commin, Andrew N. & French, Andrew S. & Marasco, Matteo & Loxton, Jennifer & Gibb, Stuart W. & McClatchey, John, 2017. "The influence of the North Atlantic Oscillation on diverse renewable generation in Scotland," Applied Energy, Elsevier, vol. 205(C), pages 855-867.
  7. Gómez, Sergio Yesid & Hotza, Dachamir, 2016. "Current developments in reversible solid oxide fuel cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 155-174.
  8. Rusu, Liliana, 2019. "The wave and wind power potential in the western Black Sea," Renewable Energy, Elsevier, vol. 139(C), pages 1146-1158.
  9. Clark, Caitlyn E. & Miller, Annalise & DuPont, Bryony, 2019. "An analytical cost model for co-located floating wind-wave energy arrays," Renewable Energy, Elsevier, vol. 132(C), pages 885-897.
  10. Barbara Zanuttigh & Elisa Angelelli & Giorgio Bellotti & Alessandro Romano & Yukiko Krontira & Dimitris Troianos & Roberto Suffredini & Giulia Franceschi & Matteo Cantù & Laura Airoldi & Fabio Zagonar, 2015. "Boosting Blue Growth in a Mild Sea: Analysis of the Synergies Produced by a Multi-Purpose Offshore Installation in the Northern Adriatic, Italy," Sustainability, MDPI, vol. 7(6), pages 1-50, May.
  11. Clemente, D. & Rosa-Santos, P. & Taveira-Pinto, F., 2021. "On the potential synergies and applications of wave energy converters: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
  12. José A. Domínguez-Navarro & Elisabetta Tedeschi, 2016. "Evaluation of the Fluid Model Approach for the Sizing of Energy Storage in Wave-Wind Energy Systems," Energies, MDPI, vol. 9(3), pages 1-19, March.
  13. Francisco Haces-Fernandez & Hua Li & David Ramirez, 2018. "Assessment of the Potential of Energy Extracted from Waves and Wind to Supply Offshore Oil Platforms Operating in the Gulf of Mexico," Energies, MDPI, vol. 11(5), pages 1-25, April.
  14. Tatiana Potapenko & Jessica S. Döhler & Francisco Francisco & George Lavidas & Irina Temiz, 2023. "Renewable Energy Potential for Micro-Grid at Hvide Sande," Sustainability, MDPI, vol. 15(3), pages 1-17, January.
  15. Kalogeri, Christina & Galanis, George & Spyrou, Christos & Diamantis, Dimitris & Baladima, Foteini & Koukoula, Marika & Kallos, George, 2017. "Assessing the European offshore wind and wave energy resource for combined exploitation," Renewable Energy, Elsevier, vol. 101(C), pages 244-264.
  16. Astariz, S. & Perez-Collazo, C. & Abanades, J. & Iglesias, G., 2015. "Co-located wave-wind farms: Economic assessment as a function of layout," Renewable Energy, Elsevier, vol. 83(C), pages 837-849.
  17. Abanades, J. & Greaves, D. & Iglesias, G., 2015. "Coastal defence using wave farms: The role of farm-to-coast distance," Renewable Energy, Elsevier, vol. 75(C), pages 572-582.
  18. Gao, Qiang & Yuan, Rui & Ertugrul, Nesimi & Ding, Boyin & Hayward, Jennifer A. & Li, Ye, 2023. "Analysis of energy variability and costs for offshore wind and hybrid power unit with equivalent energy storage system," Applied Energy, Elsevier, vol. 342(C).
  19. Li, Ming & Luo, Haojie & Zhou, Shijie & Senthil Kumar, Gokula Manikandan & Guo, Xinman & Law, Tin Chung & Cao, Sunliang, 2022. "State-of-the-art review of the flexibility and feasibility of emerging offshore and coastal ocean energy technologies in East and Southeast Asia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
  20. Bohan Wang & Zhiwei Sun & Yuanyuan Zhao & Zhiyan Li & Bohai Zhang & Jiken Xu & Peng Qian & Dahai Zhang, 2024. "The Energy Conversion and Coupling Technologies of Hybrid Wind–Wave Power Generation Systems: A Technological Review," Energies, MDPI, vol. 17(8), pages 1-24, April.
  21. Sharay Astariz & Gregorio Iglesias, 2015. "Enhancing Wave Energy Competitiveness through Co-Located Wind and Wave Energy Farms. A Review on the Shadow Effect," Energies, MDPI, vol. 8(7), pages 1-23, July.
  22. Chengcheng Gu & Hua Li, 2022. "Wave Power Density Hotspot Distribution and Correlation Pattern Exploration in the Gulf of Mexico," Sustainability, MDPI, vol. 14(3), pages 1-13, January.
  23. Sedlar, D. Karasalihović & Vulin, D. & Krajačić, G. & Jukić, L., 2019. "Offshore gas production infrastructure reutilisation for blue energy production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 159-174.
  24. Gideon, Roan A. & Bou-Zeid, Elie, 2021. "Collocating offshore wind and wave generators to reduce power output variability: A Multi-site analysis," Renewable Energy, Elsevier, vol. 163(C), pages 1548-1559.
  25. Francisco Haces-Fernandez & Hua Li & David Ramirez, 2022. "Analysis of Wave Energy Behavior and Its Underlying Reasons in the Gulf of Mexico Based on Computer Animation and Energy Events Concept," Sustainability, MDPI, vol. 14(8), pages 1-23, April.
  26. Pérez-Collazo, C. & Greaves, D. & Iglesias, G., 2015. "A review of combined wave and offshore wind energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 141-153.
  27. Hosseinzadeh, Ahmad & Zhou, John L. & Li, Xiaowei & Afsari, Morteza & Altaee, Ali, 2022. "Techno-economic and environmental impact assessment of hydrogen production processes using bio-waste as renewable energy resource," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
  28. Zanuttigh, Barbara & Angelelli, Elisa & Kortenhaus, Andreas & Koca, Kaan & Krontira, Yukiko & Koundouri, Phoebe, 2016. "A methodology for multi-criteria design of multi-use offshore platforms for marine renewable energy harvesting," Renewable Energy, Elsevier, vol. 85(C), pages 1271-1289.
  29. Del Pozo Gonzalez, Hector & Bianchi, Fernando D. & Dominguez-Garcia, Jose Luis & Gomis-Bellmunt, Oriol, 2023. "Co-located wind-wave farms: Optimal control and grid integration," Energy, Elsevier, vol. 272(C).
  30. Chiu, Forng-Chen & Huang, Wen-Yi & Tiao, Wen-Chuan, 2013. "The spatial and temporal characteristics of the wave energy resources around Taiwan," Renewable Energy, Elsevier, vol. 52(C), pages 218-221.
  31. Joselin Herbert, G.M. & Iniyan, S. & Amutha, D., 2014. "A review of technical issues on the development of wind farms," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 619-641.
  32. Pasquale Contestabile & Enrico Di Lauro & Paolo Galli & Cesare Corselli & Diego Vicinanza, 2017. "Offshore Wind and Wave Energy Assessment around Malè and Magoodhoo Island (Maldives)," Sustainability, MDPI, vol. 9(4), pages 1-24, April.
  33. Cradden, L. & Kalogeri, C. & Barrios, I. Martinez & Galanis, G. & Ingram, D. & Kallos, G., 2016. "Multi-criteria site selection for offshore renewable energy platforms," Renewable Energy, Elsevier, vol. 87(P1), pages 791-806.
  34. Christie, David & Neill, Simon P. & Arnold, Peter, 2023. "Characterising the wave energy resource of Lanzarote, Canary Islands," Renewable Energy, Elsevier, vol. 206(C), pages 1198-1211.
  35. Astariz, S. & Iglesias, G., 2017. "The collocation feasibility index – A method for selecting sites for co-located wave and wind farms," Renewable Energy, Elsevier, vol. 103(C), pages 811-824.
  36. Francisco Francisco & Jennifer Leijon & Cecilia Boström & Jens Engström & Jan Sundberg, 2018. "Wave Power as Solution for Off-Grid Water Desalination Systems: Resource Characterization for Kilifi-Kenya," Energies, MDPI, vol. 11(4), pages 1-14, April.
  37. Astariz, S. & Perez-Collazo, C. & Abanades, J. & Iglesias, G., 2015. "Towards the optimal design of a co-located wind-wave farm," Energy, Elsevier, vol. 84(C), pages 15-24.
  38. Lande-Sudall, D. & Stallard, T. & Stansby, P., 2019. "Co-located deployment of offshore wind turbines with tidal stream turbine arrays for improved cost of electricity generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 104(C), pages 492-503.
  39. Delucchi, Mark A. & Jacobson, Mark Z., 2011. "Providing all global energy with wind, water, and solar power, Part II: Reliability, system and transmission costs, and policies," Energy Policy, Elsevier, vol. 39(3), pages 1170-1190, March.
  40. Gallagher, Sarah & Tiron, Roxana & Whelan, Eoin & Gleeson, Emily & Dias, Frédéric & McGrath, Ray, 2016. "The nearshore wind and wave energy potential of Ireland: A high resolution assessment of availability and accessibility," Renewable Energy, Elsevier, vol. 88(C), pages 494-516.
  41. Novacheck, Joshua & Johnson, Jeremiah X., 2017. "Diversifying wind power in real power systems," Renewable Energy, Elsevier, vol. 106(C), pages 177-185.
  42. Faria, Victor A.D. & Rodrigo de Queiroz, Anderson & DeCarolis, Joseph F., 2023. "Scenario generation and risk-averse stochastic portfolio optimization applied to offshore renewable energy technologies," Energy, Elsevier, vol. 270(C).
  43. Commin, Andrew N. & Davidson, Magnus W.H. & Largey, Nicola & Gaffney, Paul P.J. & Braidwood, David W. & Gibb, Stuart W. & McClatchey, John, 2017. "Spatial smoothing of onshore wind: Implications for strategic development in Scotland," Energy Policy, Elsevier, vol. 109(C), pages 36-48.
  44. Watts, David & Oses, Nicolás & Pérez, Rodrigo, 2016. "Assessment of wind energy potential in Chile: A project-based regional wind supply function approach," Renewable Energy, Elsevier, vol. 96(PA), pages 738-755.
  45. Ferrari, Francesco & Besio, Giovanni & Cassola, Federico & Mazzino, Andrea, 2020. "Optimized wind and wave energy resource assessment and offshore exploitability in the Mediterranean Sea," Energy, Elsevier, vol. 190(C).
  46. Simon Watson, 2014. "Quantifying the variability of wind energy," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 3(4), pages 330-342, July.
  47. Astariz, S. & Iglesias, G., 2015. "The economics of wave energy: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 397-408.
  48. Wen, Yi & Kamranzad, Bahareh & Lin, Pengzhi, 2021. "Assessment of long-term offshore wind energy potential in the south and southeast coasts of China based on a 55-year dataset," Energy, Elsevier, vol. 224(C).
  49. Perveen, Rehana & Kishor, Nand & Mohanty, Soumya R., 2014. "Off-shore wind farm development: Present status and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 780-792.
  50. Shahriari, Mehdi & Blumsack, Seth, 2018. "The capacity value of optimal wind and solar portfolios," Energy, Elsevier, vol. 148(C), pages 992-1005.
  51. Liu, Jin & Meucci, Alberto & Liu, Qingxiang & Babanin, Alexander V. & Ierodiaconou, Daniel & Xu, Xingkun & Young, Ian R., 2023. "A high-resolution wave energy assessment of south-east Australia based on a 40-year hindcast," Renewable Energy, Elsevier, vol. 215(C).
  52. Carlos Perez-Collazo & Deborah Greaves & Gregorio Iglesias, 2018. "A Novel Hybrid Wind-Wave Energy Converter for Jacket-Frame Substructures," Energies, MDPI, vol. 11(3), pages 1-20, March.
  53. Wan, Ling & Moan, Torgeir & Gao, Zhen & Shi, Wei, 2024. "A review on the technical development of combined wind and wave energy conversion systems," Energy, Elsevier, vol. 294(C).
  54. Wen, Yi & Kamranzad, Bahareh & Lin, Pengzhi, 2022. "Joint exploitation potential of offshore wind and wave energy along the south and southeast coasts of China," Energy, Elsevier, vol. 249(C).
  55. Wu, Yunna & Zhang, Ting, 2021. "Risk assessment of offshore wave-wind-solar-compressed air energy storage power plant through fuzzy comprehensive evaluation model," Energy, Elsevier, vol. 223(C).
  56. Gaughan, Eilis & Fitzgerald, Breiffni, 2020. "An assessment of the potential for Co-located offshore wind and wave farms in Ireland," Energy, Elsevier, vol. 200(C).
  57. Lira-Loarca, Andrea & Ferrari, Francesco & Mazzino, Andrea & Besio, Giovanni, 2021. "Future wind and wave energy resources and exploitability in the Mediterranean Sea by 2100," Applied Energy, Elsevier, vol. 302(C).
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.