IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v96y2016ipap738-755.html
   My bibliography  Save this article

Assessment of wind energy potential in Chile: A project-based regional wind supply function approach

Author

Listed:
  • Watts, David
  • Oses, Nicolás
  • Pérez, Rodrigo

Abstract

Wind energy is now one of the fastest growing renewable energy sources in Chile, making it the second largest market for wind power in Latin America. This paper describes the evolution and the current state of wind power in Chile, presenting the location and performance of all wind farms in Chile. This article also aims to identify the locations of the most cost-effective wind energy potential to be developed in the near future, thus applying a project-based approach. This requires studying each individual wind farm under development or environmental evaluation. This means modeling 70 wind farm projects over the country summing 8510 MW. For each project hourly wind production profiles and histograms are developed, allowing the assessment of variability and spatial and temporal complementarity. The production of neighboring projects injecting their energy in the same transmission bus is aggregated, generating wind production profiles and histograms at transmission level. The Levelized Cost of Electricity of each project is used as a measure of economic feasibility and serves as input to produce wind supply functions for each region. This allows us to identify the most cost-effective wind energy zones for medium-term project development, a valuable input for transmission planners and the regulator.

Suggested Citation

  • Watts, David & Oses, Nicolás & Pérez, Rodrigo, 2016. "Assessment of wind energy potential in Chile: A project-based regional wind supply function approach," Renewable Energy, Elsevier, vol. 96(PA), pages 738-755.
  • Handle: RePEc:eee:renene:v:96:y:2016:i:pa:p:738-755
    DOI: 10.1016/j.renene.2016.05.038
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148116304499
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2016.05.038?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tabassum-Abbasi, & Premalatha, M. & Abbasi, Tasneem & Abbasi, S.A., 2014. "Wind energy: Increasing deployment, rising environmental concerns," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 270-288.
    2. Mukulo, B.M. & Ngaruiya, J.M. & Kamau, J.N., 2014. "Determination of wind energy potential in the Mwingi-Kitui plateau of Kenya," Renewable Energy, Elsevier, vol. 63(C), pages 18-22.
    3. Wang, Shifeng & Wang, Sicong, 2015. "Impacts of wind energy on environment: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 437-443.
    4. Pueyo, Ana, 2013. "Enabling frameworks for low-carbon technology transfer to small emerging economies: Analysis of ten case studies in Chile," Energy Policy, Elsevier, vol. 53(C), pages 370-380.
    5. Nishio, Kenichiro & Asano, Hiroshi, 2006. "Supply amount and marginal price of renewable electricity under the renewables portfolio standard in Japan," Energy Policy, Elsevier, vol. 34(15), pages 2373-2387, October.
    6. Gernaat, David E.H.J. & Van Vuuren, Detlef P. & Van Vliet, Jasper & Sullivan, Patrick & Arent, Douglas J., 2014. "Global long-term cost dynamics of offshore wind electricity generation," Energy, Elsevier, vol. 76(C), pages 663-672.
    7. Yaniktepe, B. & Koroglu, T. & Savrun, M.M., 2013. "Investigation of wind characteristics and wind energy potential in Osmaniye, Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 703-711.
    8. Oner, Yasemin & Ozcira, Selin & Bekiroglu, Nur & Senol, Ibrahim, 2013. "A comparative analysis of wind power density prediction methods for Çanakkale, Intepe region, Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 491-502.
    9. Watts, David & Albornoz, Constanza & Watson, Andrea, 2015. "Clean Development Mechanism (CDM) after the first commitment period: Assessment of the world׳s portfolio and the role of Latin America," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 1176-1189.
    10. Nor, Khalid Mohamed & Shaaban, Mohamed & Abdul Rahman, Hasimah, 2014. "Feasibility assessment of wind energy resources in Malaysia based on NWP models," Renewable Energy, Elsevier, vol. 62(C), pages 147-154.
    11. Monforti, F. & Huld, T. & Bódis, K. & Vitali, L. & D'Isidoro, M. & Lacal-Arántegui, R., 2014. "Assessing complementarity of wind and solar resources for energy production in Italy. A Monte Carlo approach," Renewable Energy, Elsevier, vol. 63(C), pages 576-586.
    12. Crane, Keith & Curtright, Aimee E. & Ortiz, David S. & Samaras, Constantine & Burger, Nicholas, 2011. "The economic costs of reducing greenhouse gas emissions under a U.S. national renewable electricity mandate," Energy Policy, Elsevier, vol. 39(5), pages 2730-2739, May.
    13. Caralis, George & Diakoulaki, Danae & Yang, Peijin & Gao, Zhiqiu & Zervos, Arthouros & Rados, Kostas, 2014. "Profitability of wind energy investments in China using a Monte Carlo approach for the treatment of uncertainties," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 224-236.
    14. Kumar, Ajal & Prasad, Shivneel, 2010. "Examining wind quality and wind power prospects on Fiji Islands," Renewable Energy, Elsevier, vol. 35(2), pages 536-540.
    15. Abbes, Mohamed & Belhadj, Jamel, 2012. "Wind resource estimation and wind park design in El-Kef region, Tunisia," Energy, Elsevier, vol. 40(1), pages 348-357.
    16. Gunturu, Udaya Bhaskar & Schlosser, C. Adam, 2015. "Behavior of the aggregate wind resource in the ISO regions in the United States," Applied Energy, Elsevier, vol. 144(C), pages 175-181.
    17. Nordman, Erik E., 2014. "Energy transitions in Kenya's tea sector: A wind energy assessment," Renewable Energy, Elsevier, vol. 68(C), pages 505-514.
    18. Stoutenburg, Eric D. & Jenkins, Nicholas & Jacobson, Mark Z., 2010. "Power output variations of co-located offshore wind turbines and wave energy converters in California," Renewable Energy, Elsevier, vol. 35(12), pages 2781-2791.
    19. Katsigiannis, Yiannis A. & Stavrakakis, George S., 2014. "Estimation of wind energy production in various sites in Australia for different wind turbine classes: A comparative technical and economic assessment," Renewable Energy, Elsevier, vol. 67(C), pages 230-236.
    20. Schallenberg-Rodriguez, Julieta, 2013. "A methodological review to estimate techno-economical wind energy production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 272-287.
    21. Huber, Claus & Ryan, Lisa & O Gallachoir, Brian & Resch, Gustav & Polaski, Katrina & Bazilian, Morgan, 2007. "Economic modelling of price support mechanisms for renewable energy: Case study on Ireland," Energy Policy, Elsevier, vol. 35(2), pages 1172-1185, February.
    22. Yue, Cheng-Dar & Yang, Min-How, 2009. "Exploring the potential of wind energy for a coastal state," Energy Policy, Elsevier, vol. 37(10), pages 3925-3940, October.
    23. Xydis, George, 2013. "A techno-economic and spatial analysis for the optimal planning of wind energy in Kythira island, Greece," International Journal of Production Economics, Elsevier, vol. 146(2), pages 440-452.
    24. Morales, Luis & Lang, Francisco & Mattar, Cristian, 2012. "Mesoscale wind speed simulation using CALMET model and reanalysis information: An application to wind potential," Renewable Energy, Elsevier, vol. 48(C), pages 57-71.
    25. Watts, David & Jara, Danilo, 2011. "Statistical analysis of wind energy in Chile," Renewable Energy, Elsevier, vol. 36(5), pages 1603-1613.
    26. Grassi, Stefano & Junghans, Sven & Raubal, Martin, 2014. "Assessment of the wake effect on the energy production of onshore wind farms using GIS," Applied Energy, Elsevier, vol. 136(C), pages 827-837.
    27. Krokoszinski, H.-J., 2003. "Efficiency and effectiveness of wind farms—keys to cost optimized operation and maintenance," Renewable Energy, Elsevier, vol. 28(14), pages 2165-2178.
    28. Colmenar-Santos, Antonio & Campíñez-Romero, Severo & Pérez-Molina, Clara & Mur-Pérez, Francisco, 2015. "Repowering: An actual possibility for wind energy in Spain in a new scenario without feed-in-tariffs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 319-337.
    29. Olaofe, Zaccheus O. & Folly, Komla A., 2013. "Wind energy analysis based on turbine and developed site power curves: A case-study of Darling City," Renewable Energy, Elsevier, vol. 53(C), pages 306-318.
    30. Fueyo, Norberto & Sanz, Yosune & Rodrigues, Marcos & Montañés, Carlos & Dopazo, César, 2011. "The use of cost-generation curves for the analysis of wind electricity costs in Spain," Applied Energy, Elsevier, vol. 88(3), pages 733-740, March.
    31. Nikolić, Vlastimir & Shamshirband, Shahaboddin & Petković, Dalibor & Mohammadi, Kasra & Ćojbašić, Žarko & Altameem, Torki A. & Gani, Abdullah, 2015. "Wind wake influence estimation on energy production of wind farm by adaptive neuro-fuzzy methodology," Energy, Elsevier, vol. 80(C), pages 361-372.
    32. Rehman, S & Halawani, T.O & Mohandes, M, 2003. "Wind power cost assessment at twenty locations in the kingdom of Saudi Arabia," Renewable Energy, Elsevier, vol. 28(4), pages 573-583.
    33. Gallego-Castillo, Cristobal & Cuerva-Tejero, Alvaro & Lopez-Garcia, Oscar, 2015. "A review on the recent history of wind power ramp forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1148-1157.
    34. Kirby, Brendan & Milligan, Michael, 2008. "An Examination of Capacity and Ramping Impacts of Wind Energy on Power Systems," The Electricity Journal, Elsevier, vol. 21(7), pages 30-42.
    35. Santos-Alamillos, F.J. & Pozo-Vázquez, D. & Ruiz-Arias, J.A. & Lara-Fanego, V. & Tovar-Pescador, J., 2014. "A methodology for evaluating the spatial variability of wind energy resources: Application to assess the potential contribution of wind energy to baseload power," Renewable Energy, Elsevier, vol. 69(C), pages 147-156.
    36. Olauson, Jon & Bergkvist, Mikael, 2015. "Modelling the Swedish wind power production using MERRA reanalysis data," Renewable Energy, Elsevier, vol. 76(C), pages 717-725.
    37. Hirth, Lion & Ziegenhagen, Inka, 2015. "Balancing power and variable renewables: Three links," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 1035-1051.
    38. Schallenberg-Rodríguez, Julieta & Notario-del Pino, Jesús, 2014. "Evaluation of on-shore wind techno-economical potential in regions and islands," Applied Energy, Elsevier, vol. 124(C), pages 117-129.
    39. De Vos, Kristof & Petoussis, Andreas G. & Driesen, Johan & Belmans, Ronnie, 2013. "Revision of reserve requirements following wind power integration in island power systems," Renewable Energy, Elsevier, vol. 50(C), pages 268-279.
    40. del Río, Pablo & Cerdá, Emilio, 2014. "The policy implications of the different interpretations of the cost-effectiveness of renewable electricity support," Energy Policy, Elsevier, vol. 64(C), pages 364-372.
    41. Fazelpour, Farivar & Soltani, Nima & Soltani, Sina & Rosen, Marc A., 2015. "Assessment of wind energy potential and economics in the north-western Iranian cities of Tabriz and Ardabil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 87-99.
    42. Husien, Walid & El-Osta, Wedad & Dekam, Elhadi, 2013. "Effect of the wake behind wind rotor on optimum energy output of wind farms," Renewable Energy, Elsevier, vol. 49(C), pages 128-132.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Raugei, Marco & Leccisi, Enrica & Fthenakis, Vasilis & Escobar Moragas, Rodrigo & Simsek, Yeliz, 2018. "Net energy analysis and life cycle energy assessment of electricity supply in Chile: Present status and future scenarios," Energy, Elsevier, vol. 162(C), pages 659-668.
    2. Odeh, Rodrigo Pérez & Watts, David, 2019. "Impacts of wind and solar spatial diversification on its market value: A case study of the Chilean electricity market," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 442-461.
    3. Fazelpour, Farivar & Markarian, Elin & Soltani, Nima, 2017. "Wind energy potential and economic assessment of four locations in Sistan and Balouchestan province in Iran," Renewable Energy, Elsevier, vol. 109(C), pages 646-667.
    4. Román-Collado, Rocío & Ordoñez, Manuel & Mundaca, Luis, 2018. "Has electricity turned green or black in Chile? A structural decomposition analysis of energy consumption," Energy, Elsevier, vol. 162(C), pages 282-298.
    5. Kristjanpoller, Fredy & Cárdenas-Pantoja, Nicolás & Viveros, Pablo & Pascual, Rodrigo, 2023. "Wind farm life cycle cost modelling based on oversizing capacity under load sharing configuration," Reliability Engineering and System Safety, Elsevier, vol. 236(C).
    6. Chen, Xinping & Foley, Aoife & Zhang, Zenghai & Wang, Kaimin & O'Driscoll, Kieran, 2020. "An assessment of wind energy potential in the Beibu Gulf considering the energy demands of the Beibu Gulf Economic Rim," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    7. Rosende, Catalina & Sauma, Enzo & Harrison, Gareth P., 2019. "Effect of Climate Change on wind speed and its impact on optimal power system expansion planning: The case of Chile," Energy Economics, Elsevier, vol. 80(C), pages 434-451.
    8. Maddi Aizpurua-Etxezarreta & Sheila Carreno-Madinabeitia & Alain Ulazia & Jon Sáenz & Aitor Saenz-Aguirre, 2022. "Long-Term Freezing Temperatures Frequency Change Effect on Wind Energy Gain (Eurasia and North America, 1950–2019)," Sustainability, MDPI, vol. 14(9), pages 1-15, May.
    9. Icaza, Daniel & Borge-Diez, David & Galindo, Santiago Pulla, 2022. "Analysis and proposal of energy planning and renewable energy plans in South America: Case study of Ecuador," Renewable Energy, Elsevier, vol. 182(C), pages 314-342.
    10. Mohammadzadeh Bina, Saeid & Jalilinasrabady, Saeid & Fujii, Hikari & Farabi-Asl, Hadi, 2018. "A comprehensive approach for wind power plant potential assessment, application to northwestern Iran," Energy, Elsevier, vol. 164(C), pages 344-358.
    11. Chen, Xinping & Wang, Kaimin & Zhang, Zenghai & Zeng, Yindong & Zhang, Yao & O'Driscoll, Kieran, 2017. "An assessment of wind and wave climate as potential sources of renewable energy in the nearshore Shenzhen coastal zone of the South China Sea," Energy, Elsevier, vol. 134(C), pages 789-801.
    12. Ramirez Camargo, Luis & Valdes, Javier & Masip Macia, Yunesky & Dorner, Wolfgang, 2019. "Assessment of on-site steady electricity generation from hybrid renewable energy systems in Chile," Applied Energy, Elsevier, vol. 250(C), pages 1548-1558.
    13. Pérez Odeh, Rodrigo & Watts, David & Flores, Yarela, 2018. "Planning in a changing environment: Applications of portfolio optimisation to deal with risk in the electricity sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3808-3823.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Watts, David & Durán, Pablo & Flores, Yarela, 2017. "How does El Niño Southern Oscillation impact the wind resource in Chile? A techno-economical assessment of the influence of El Niño and La Niña on the wind power," Renewable Energy, Elsevier, vol. 103(C), pages 128-142.
    2. McKenna, Russell & Pfenninger, Stefan & Heinrichs, Heidi & Schmidt, Johannes & Staffell, Iain & Bauer, Christian & Gruber, Katharina & Hahmann, Andrea N. & Jansen, Malte & Klingler, Michael & Landwehr, 2022. "High-resolution large-scale onshore wind energy assessments: A review of potential definitions, methodologies and future research needs," Renewable Energy, Elsevier, vol. 182(C), pages 659-684.
    3. Pérez Odeh, Rodrigo & Watts, David & Flores, Yarela, 2018. "Planning in a changing environment: Applications of portfolio optimisation to deal with risk in the electricity sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3808-3823.
    4. Jäger, Tobias & McKenna, Russell & Fichtner, Wolf, 2016. "The feasible onshore wind energy potential in Baden-Württemberg: A bottom-up methodology considering socio-economic constraints," Renewable Energy, Elsevier, vol. 96(PA), pages 662-675.
    5. Waewsak, Jompob & Landry, Mathieu & Gagnon, Yves, 2015. "Offshore wind power potential of the Gulf of Thailand," Renewable Energy, Elsevier, vol. 81(C), pages 609-626.
    6. Mehr Gul & Nengling Tai & Wentao Huang & Muhammad Haroon Nadeem & Moduo Yu, 2019. "Assessment of Wind Power Potential and Economic Analysis at Hyderabad in Pakistan: Powering to Local Communities Using Wind Power," Sustainability, MDPI, vol. 11(5), pages 1-23, March.
    7. Yip, Chak Man Andrew & Gunturu, Udaya Bhaskar & Stenchikov, Georgiy L., 2016. "Wind resource characterization in the Arabian Peninsula," Applied Energy, Elsevier, vol. 164(C), pages 826-836.
    8. Baseer, M.A. & Meyer, J.P. & Rehman, S. & Md. Mahbub Alam, & Al-Hadhrami, L.M. & Lashin, A., 2016. "Performance evaluation of cup-anemometers and wind speed characteristics analysis," Renewable Energy, Elsevier, vol. 86(C), pages 733-744.
    9. Russell McKenna & Stefan Pfenninger & Heidi Heinrichs & Johannes Schmidt & Iain Staffell & Katharina Gruber & Andrea N. Hahmann & Malte Jansen & Michael Klingler & Natascha Landwehr & Xiaoli Guo Lars', 2021. "Reviewing methods and assumptions for high-resolution large-scale onshore wind energy potential assessments," Papers 2103.09781, arXiv.org.
    10. Jäger, Tobias & McKenna, Russell & Fichtner, Wolf, 2015. "Onshore wind energy in Baden-Württemberg: a bottom-up economic assessment of the socio-technical potential," Working Paper Series in Production and Energy 7, Karlsruhe Institute of Technology (KIT), Institute for Industrial Production (IIP).
    11. Ilkiliç, Cumali & Aydin, Hüseyin, 2015. "Wind power potential and usage in the coastal regions of Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 78-86.
    12. Jonasson, Erik & Fjellstedt, Christoffer & Temiz, Irina, 2024. "Grid impact of co-located offshore renewable energy sources," Renewable Energy, Elsevier, vol. 230(C).
    13. Lydia, M. & Kumar, S. Suresh & Selvakumar, A. Immanuel & Prem Kumar, G. Edwin, 2014. "A comprehensive review on wind turbine power curve modeling techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 452-460.
    14. Siyal, Shahid Hussain & Mörtberg, Ulla & Mentis, Dimitris & Welsch, Manuel & Babelon, Ian & Howells, Mark, 2015. "Wind energy assessment considering geographic and environmental restrictions in Sweden: A GIS-based approach," Energy, Elsevier, vol. 83(C), pages 447-461.
    15. Brijs, Tom & De Vos, Kristof & De Jonghe, Cedric & Belmans, Ronnie, 2015. "Statistical analysis of negative prices in European balancing markets," Renewable Energy, Elsevier, vol. 80(C), pages 53-60.
    16. Murthy, K.S.R. & Rahi, O.P., 2017. "A comprehensive review of wind resource assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 1320-1342.
    17. Minaeian, Ali & Sedaghat, Ahmad & Mostafaeipour, Ali & Akbar Alemrajabi, Ali, 2017. "Exploring economy of small communities and households by investing on harnessing wind energy in the province of Sistan-Baluchestan in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 835-847.
    18. Morteza Aien & Omid Mahdavi, 2020. "On the Way of Policy Making to Reduce the Reliance of Fossil Fuels: Case Study of Iran," Sustainability, MDPI, vol. 12(24), pages 1-28, December.
    19. Schallenberg-Rodríguez, Julieta & Notario-del Pino, Jesús, 2014. "Evaluation of on-shore wind techno-economical potential in regions and islands," Applied Energy, Elsevier, vol. 124(C), pages 117-129.
    20. Khahro, Shahnawaz Farhan & Tabbassum, Kavita & Mahmood Soomro, Amir & Liao, Xiaozhong & Alvi, Muhammad Bux & Dong, Lei & Manzoor, M. Farhan, 2014. "Techno-economical evaluation of wind energy potential and analysis of power generation from wind at Gharo, Sindh Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 460-474.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:96:y:2016:i:pa:p:738-755. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.