IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v270y2023ics0360544223003407.html
   My bibliography  Save this article

Scenario generation and risk-averse stochastic portfolio optimization applied to offshore renewable energy technologies

Author

Listed:
  • Faria, Victor A.D.
  • Rodrigo de Queiroz, Anderson
  • DeCarolis, Joseph F.

Abstract

This work proposes an analytical decision-making framework considering scenario generation using artificial neural networks and risk-averse stochastic programming to define renewable offshore portfolios of wind, wave, and ocean current technologies. For the scenario generation, a generative adversarial neural network is developed to generate synthetic energy scenarios considering resources distributed over large geographic regions. These scenarios are then fed to a stochastic model, which objective to determine the optimal location and number of turbines for each technology. In the stochastic model formulation, a representation of the limits in the portfolio Levelized Cost of Energy and the maximization of the five percent lower energy generation conditions, also known as Conditional Value at Risk, is presented. The framework proposed here is tested considering data from a portion of the U.S. East coast, where the generative model was successful in creating energy scenarios statistically consistent with the historical data for wind, wave, and ocean current resources at more than 500 sites. Furthermore, the Conditional Value at Risk portfolio optimization model was used to construct efficient frontiers for a combination of different technologies, showing the significance of resource diversification as a tool to improve system security.

Suggested Citation

  • Faria, Victor A.D. & Rodrigo de Queiroz, Anderson & DeCarolis, Joseph F., 2023. "Scenario generation and risk-averse stochastic portfolio optimization applied to offshore renewable energy technologies," Energy, Elsevier, vol. 270(C).
  • Handle: RePEc:eee:energy:v:270:y:2023:i:c:s0360544223003407
    DOI: 10.1016/j.energy.2023.126946
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223003407
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.126946?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shakouri, Mahmoud & Lee, Hyun Woo & Kim, Yong-Woo, 2017. "A probabilistic portfolio-based model for financial valuation of community solar," Applied Energy, Elsevier, vol. 191(C), pages 709-726.
    2. Aquila, Giancarlo & Coelho, Eden de Oliveira Pinto & Bonatto, Benedito Donizeti & Pamplona, Edson de Oliveira & Nakamura, Wilson Toshiro, 2021. "Perspective of uncertainty and risk from the CVaR-LCOE approach: An analysis of the case of PV microgeneration in Minas Gerais, Brazil," Energy, Elsevier, vol. 226(C).
    3. Sinsel, Simon R. & Yan, Xuqian & Stephan, Annegret, 2019. "Building resilient renewable power generation portfolios: The impact of diversification on investors’ risk and return," Applied Energy, Elsevier, vol. 254(C).
    4. Camal, S. & Teng, F. & Michiorri, A. & Kariniotakis, G. & Badesa, L., 2019. "Scenario generation of aggregated Wind, Photovoltaics and small Hydro production for power systems applications," Applied Energy, Elsevier, vol. 242(C), pages 1396-1406.
    5. Díaz, Guzmán & Gómez-Aleixandre, Javier & Coto, José, 2016. "Wind power scenario generation through state-space specifications for uncertainty analysis of wind power plants," Applied Energy, Elsevier, vol. 162(C), pages 21-30.
    6. Harry Markowitz, 1952. "Portfolio Selection," Journal of Finance, American Finance Association, vol. 7(1), pages 77-91, March.
    7. Stoutenburg, Eric D. & Jenkins, Nicholas & Jacobson, Mark Z., 2010. "Power output variations of co-located offshore wind turbines and wave energy converters in California," Renewable Energy, Elsevier, vol. 35(12), pages 2781-2791.
    8. Li, Binghui & de Queiroz, Anderson Rodrigo & DeCarolis, Joseph F. & Bane, John & He, Ruoying & Keeler, Andrew G. & Neary, Vincent S., 2017. "The economics of electricity generation from Gulf Stream currents," Energy, Elsevier, vol. 134(C), pages 649-658.
    9. de Faria, Victor A.D. & de Queiroz, Anderson R. & DeCarolis, Joseph F., 2022. "Optimizing offshore renewable portfolios under resource variability," Applied Energy, Elsevier, vol. 326(C).
    10. Silva, Allan Rodrigues & Pimenta, Felipe Mendonça & Assireu, Arcilan Trevenzoli & Spyrides, Maria Helena Constantino, 2016. "Complementarity of Brazil׳s hydro and offshore wind power," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 413-427.
    11. Santos-Alamillos, F.J. & Thomaidis, N.S. & Usaola-García, J. & Ruiz-Arias, J.A. & Pozo-Vázquez, D., 2017. "Exploring the mean-variance portfolio optimization approach for planning wind repowering actions in Spain," Renewable Energy, Elsevier, vol. 106(C), pages 335-342.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. de Faria, Victor A.D. & de Queiroz, Anderson R. & DeCarolis, Joseph F., 2022. "Optimizing offshore renewable portfolios under resource variability," Applied Energy, Elsevier, vol. 326(C).
    2. Li, Jinghua & Zhou, Jiasheng & Chen, Bo, 2020. "Review of wind power scenario generation methods for optimal operation of renewable energy systems," Applied Energy, Elsevier, vol. 280(C).
    3. Li, Carmen & Chyong, Chi Kong & Reiner, David M. & Roques, Fabien, 2024. "Taking a Portfolio approach to wind and solar deployment: The case of the National Electricity Market in Australia," Applied Energy, Elsevier, vol. 369(C).
    4. Thomaidis, Nikolaos S. & Christodoulou, Theodoros & Santos-Alamillos, Francisco J., 2023. "Handling the risk dimensions of wind energy generation," Applied Energy, Elsevier, vol. 339(C).
    5. Unni, Arjun C. & Ongsakul, Weerakorn & Madhu M., Nimal, 2020. "Fuzzy-based novel risk and reward definition applied for optimal generation-mix estimation," Renewable Energy, Elsevier, vol. 148(C), pages 665-673.
    6. Wen, Yi & Kamranzad, Bahareh & Lin, Pengzhi, 2021. "Assessment of long-term offshore wind energy potential in the south and southeast coasts of China based on a 55-year dataset," Energy, Elsevier, vol. 224(C).
    7. Gabriel Malta Castro & Claude Klockl & Peter Regner & Johannes Schmidt & Amaro Olimpio Pereira Jr, 2021. "Improvements to Modern Portfolio Theory based models applied to electricity systems," Papers 2105.08182, arXiv.org.
    8. Wen, Yi & Kamranzad, Bahareh & Lin, Pengzhi, 2022. "Joint exploitation potential of offshore wind and wave energy along the south and southeast coasts of China," Energy, Elsevier, vol. 249(C).
    9. Turkson, Charles & Liu, Wenbin & Acquaye, Adolf, 2024. "A data envelopment analysis based evaluation of sustainable energy generation portfolio scenarios," Applied Energy, Elsevier, vol. 363(C).
    10. Castro, Gabriel Malta & Klöckl, Claude & Regner, Peter & Schmidt, Johannes & Pereira, Amaro Olimpio, 2022. "Improvements to Modern Portfolio Theory based models applied to electricity systems," Energy Economics, Elsevier, vol. 111(C).
    11. Dong, Wei & Chen, Xianqing & Yang, Qiang, 2022. "Data-driven scenario generation of renewable energy production based on controllable generative adversarial networks with interpretability," Applied Energy, Elsevier, vol. 308(C).
    12. Tapia Carpio, Lucio Guido, 2021. "Mitigating the risk of photovoltaic power generation: A complementarity model of solar irradiation in diverse regions applied to Brazil," Utilities Policy, Elsevier, vol. 71(C).
    13. Li, M.S. & Lin, Z.J. & Ji, T.Y. & Wu, Q.H., 2018. "Risk constrained stochastic economic dispatch considering dependence of multiple wind farms using pair-copula," Applied Energy, Elsevier, vol. 226(C), pages 967-978.
    14. M, Jisma & Mohan, Vivek & Thomas, Mini Shaji & Madhu M, Nimal, 2022. "Risk-Calibrated conventional-renewable generation mix using master-slave portfolio approach guided by flexible investor preferencing," Energy, Elsevier, vol. 245(C).
    15. Shahriari, Mehdi & Blumsack, Seth, 2018. "The capacity value of optimal wind and solar portfolios," Energy, Elsevier, vol. 148(C), pages 992-1005.
    16. Akosah, Nana Kwame & Alagidede, Imhotep Paul & Schaling, Eric, 2020. "Testing for asymmetry in monetary policy rule for small-open developing economies: Multiscale Bayesian quantile evidence from Ghana," The Journal of Economic Asymmetries, Elsevier, vol. 22(C).
    17. Cui, Xueting & Zhu, Shushang & Sun, Xiaoling & Li, Duan, 2013. "Nonlinear portfolio selection using approximate parametric Value-at-Risk," Journal of Banking & Finance, Elsevier, vol. 37(6), pages 2124-2139.
    18. Pichler, Anton & Poledna, Sebastian & Thurner, Stefan, 2021. "Systemic risk-efficient asset allocations: Minimization of systemic risk as a network optimization problem," Journal of Financial Stability, Elsevier, vol. 52(C).
    19. Peter A. Abken & Milind M. Shrikhande, 1997. "The role of currency derivatives in internationally diversified portfolios," Economic Review, Federal Reserve Bank of Atlanta, vol. 82(Q 3), pages 34-59.
    20. Dhanya Jothimani & Ravi Shankar & Surendra S. Yadav, 2018. "A Big data analytical framework for portfolio optimization," Papers 1811.07188, arXiv.org, revised Nov 2018.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:270:y:2023:i:c:s0360544223003407. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.