IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v373y2024ics0306261924012881.html
   My bibliography  Save this article

Exponential slime mould algorithm based spatial arrays optimization of hybrid wind-wave-PV systems for power enhancement

Author

Listed:
  • Li, Miwei
  • Yang, Bo
  • Duan, Jinhang
  • Shu, Hongchun
  • Wang, Yutong
  • Yang, Zhaowei
  • Jiang, Lin
  • Chen, Yixuan
  • Sang, Yiyan

Abstract

Renewable clean energy sources, such as wind, solar, and wave energy, are currently gaining prominence and are being extensively researched. Given the escalating significance of clean energy, hybrid systems have gradually become an effective solution to address energy and environmental issues. In order to maximize the advantages of wind, wave energy, and photovoltaic (PV), this paper proposes a hybrid wind-wave-PV system (HWWPS) by combining wind turbines, PV panels, and wave energy converter (WEC) to achieve higher energy production and efficiency. To further enhance power output, this paper focuses on the influence of system spatial array optimization on power output and adopts an algorithm to establish a strategic layout. Through the integration of the chaos algorithm, exponential asynchronous factor, and the sine-cosine mechanism, the original slime mould algorithm (SMA) algorithm is enhanced to the exponential slime mould algorithm (ESMA), which has better optimization capability and is particularly suitable for determining the optimal power configuration. Simulations are conducted on hybrid systems consisting of three, seven, and thirteen buoys, respectively, which compare the ESMA are compared with the other six algorithms. The results verify the advantages of ESMA over the other algorithms, and demonstrates the superiority becomes more prominent as the system size increases.

Suggested Citation

  • Li, Miwei & Yang, Bo & Duan, Jinhang & Shu, Hongchun & Wang, Yutong & Yang, Zhaowei & Jiang, Lin & Chen, Yixuan & Sang, Yiyan, 2024. "Exponential slime mould algorithm based spatial arrays optimization of hybrid wind-wave-PV systems for power enhancement," Applied Energy, Elsevier, vol. 373(C).
  • Handle: RePEc:eee:appene:v:373:y:2024:i:c:s0306261924012881
    DOI: 10.1016/j.apenergy.2024.123905
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924012881
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.123905?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Vázquez, Rubén & Cabos, William & Nieto-Borge, José Carlos & Gutiérrez, Claudia, 2024. "Complementarity of offshore energy resources on the Spanish coasts: Wind, wave, and photovoltaic energy," Renewable Energy, Elsevier, vol. 224(C).
    2. Pennock, Shona & Coles, Daniel & Angeloudis, Athanasios & Bhattacharya, Saptarshi & Jeffrey, Henry, 2022. "Temporal complementarity of marine renewables with wind and solar generation: Implications for GB system benefits," Applied Energy, Elsevier, vol. 319(C).
    3. Fusco, Francesco & Nolan, Gary & Ringwood, John V., 2010. "Variability reduction through optimal combination of wind/wave resources – An Irish case study," Energy, Elsevier, vol. 35(1), pages 314-325.
    4. Yang, Bo & Li, Miwei & Qin, Risheng & Luo, Enbo & Duan, Jinhang & Liu, Bingqiang & Wang, Yutong & Wang, Jingbo & Jiang, Lin, 2024. "Extracted power optimization of hybrid wind-wave energy converters array layout via enhanced snake optimizer," Energy, Elsevier, vol. 293(C).
    5. Saleem, Shaham & Zhang, Yixiang, 2024. "Impact of knowledge and trust on households' solar energy consumption behavior: Do social influence and gender matter?," Energy, Elsevier, vol. 293(C).
    6. Teixeira, Bernardo & Brito, Miguel Centeno & Mateus, António, 2024. "Raw materials for the Portuguese decarbonization roadmap: The case of solar photovoltaics and wind energy," Resources Policy, Elsevier, vol. 90(C).
    7. Neill, Simon P., 2024. "Wave resource characterization and co-location with offshore wind in the Irish Sea," Renewable Energy, Elsevier, vol. 222(C).
    8. Cheng, Yong & Xi, Chen & Dai, Saishuai & Ji, Chunyan & Cocard, Margot, 2021. "Wave energy extraction for an array of dual-oscillating wave surge converter with different layouts," Applied Energy, Elsevier, vol. 292(C).
    9. Kale, Baris & Buckingham, Sophia & van Beeck, Jeroen & Cuerva-Tejero, Alvaro, 2023. "Comparison of the wake characteristics and aerodynamic response of a wind turbine under varying atmospheric conditions using WRF-LES-GAD and WRF-LES-GAL wind turbine models," Renewable Energy, Elsevier, vol. 216(C).
    10. Stoutenburg, Eric D. & Jenkins, Nicholas & Jacobson, Mark Z., 2010. "Power output variations of co-located offshore wind turbines and wave energy converters in California," Renewable Energy, Elsevier, vol. 35(12), pages 2781-2791.
    11. Yang, Bo & Wu, Shaocong & Zhang, Hao & Liu, Bingqiang & Shu, Hongchun & Shan, Jieshan & Ren, Yaxing & Yao, Wei, 2022. "Wave energy converter array layout optimization: A critical and comprehensive overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    12. Gideon, Roan A. & Bou-Zeid, Elie, 2021. "Collocating offshore wind and wave generators to reduce power output variability: A Multi-site analysis," Renewable Energy, Elsevier, vol. 163(C), pages 1548-1559.
    13. Bi, Cheng & Law, Adrian Wing-Keung, 2023. "Co-locating offshore wind and floating solar farms – Effect of high wind and wave conditions on solar power performance," Energy, Elsevier, vol. 266(C).
    14. Widén, Joakim & Carpman, Nicole & Castellucci, Valeria & Lingfors, David & Olauson, Jon & Remouit, Flore & Bergkvist, Mikael & Grabbe, Mårten & Waters, Rafael, 2015. "Variability assessment and forecasting of renewables: A review for solar, wind, wave and tidal resources," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 356-375.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gao, Qiang & Khan, Salman Saeed & Sergiienko, Nataliia & Ertugrul, Nesimi & Hemer, Mark & Negnevitsky, Michael & Ding, Boyin, 2022. "Assessment of wind and wave power characteristic and potential for hybrid exploration in Australia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    2. Gao, Qiang & Yuan, Rui & Ertugrul, Nesimi & Ding, Boyin & Hayward, Jennifer A. & Li, Ye, 2023. "Analysis of energy variability and costs for offshore wind and hybrid power unit with equivalent energy storage system," Applied Energy, Elsevier, vol. 342(C).
    3. José A. Domínguez-Navarro & Elisabetta Tedeschi, 2016. "Evaluation of the Fluid Model Approach for the Sizing of Energy Storage in Wave-Wind Energy Systems," Energies, MDPI, vol. 9(3), pages 1-19, March.
    4. Wan, Ling & Moan, Torgeir & Gao, Zhen & Shi, Wei, 2024. "A review on the technical development of combined wind and wave energy conversion systems," Energy, Elsevier, vol. 294(C).
    5. Jonasson, Erik & Fjellstedt, Christoffer & Temiz, Irina, 2024. "Grid impact of co-located offshore renewable energy sources," Renewable Energy, Elsevier, vol. 230(C).
    6. Pasquale Contestabile & Enrico Di Lauro & Paolo Galli & Cesare Corselli & Diego Vicinanza, 2017. "Offshore Wind and Wave Energy Assessment around Malè and Magoodhoo Island (Maldives)," Sustainability, MDPI, vol. 9(4), pages 1-24, April.
    7. Gallagher, Sarah & Tiron, Roxana & Whelan, Eoin & Gleeson, Emily & Dias, Frédéric & McGrath, Ray, 2016. "The nearshore wind and wave energy potential of Ireland: A high resolution assessment of availability and accessibility," Renewable Energy, Elsevier, vol. 88(C), pages 494-516.
    8. Clark, Caitlyn E. & Miller, Annalise & DuPont, Bryony, 2019. "An analytical cost model for co-located floating wind-wave energy arrays," Renewable Energy, Elsevier, vol. 132(C), pages 885-897.
    9. Perveen, Rehana & Kishor, Nand & Mohanty, Soumya R., 2014. "Off-shore wind farm development: Present status and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 780-792.
    10. Kalogeri, Christina & Galanis, George & Spyrou, Christos & Diamantis, Dimitris & Baladima, Foteini & Koukoula, Marika & Kallos, George, 2017. "Assessing the European offshore wind and wave energy resource for combined exploitation," Renewable Energy, Elsevier, vol. 101(C), pages 244-264.
    11. Wen, Yi & Kamranzad, Bahareh & Lin, Pengzhi, 2022. "Joint exploitation potential of offshore wind and wave energy along the south and southeast coasts of China," Energy, Elsevier, vol. 249(C).
    12. Sedlar, D. Karasalihović & Vulin, D. & Krajačić, G. & Jukić, L., 2019. "Offshore gas production infrastructure reutilisation for blue energy production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 159-174.
    13. Christie, David & Neill, Simon P. & Arnold, Peter, 2023. "Characterising the wave energy resource of Lanzarote, Canary Islands," Renewable Energy, Elsevier, vol. 206(C), pages 1198-1211.
    14. Zanuttigh, Barbara & Angelelli, Elisa & Kortenhaus, Andreas & Koca, Kaan & Krontira, Yukiko & Koundouri, Phoebe, 2016. "A methodology for multi-criteria design of multi-use offshore platforms for marine renewable energy harvesting," Renewable Energy, Elsevier, vol. 85(C), pages 1271-1289.
    15. Wu, Yunna & Zhang, Ting, 2021. "Risk assessment of offshore wave-wind-solar-compressed air energy storage power plant through fuzzy comprehensive evaluation model," Energy, Elsevier, vol. 223(C).
    16. Simon Watson, 2014. "Quantifying the variability of wind energy," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 3(4), pages 330-342, July.
    17. Astariz, S. & Perez-Collazo, C. & Abanades, J. & Iglesias, G., 2015. "Co-located wave-wind farms: Economic assessment as a function of layout," Renewable Energy, Elsevier, vol. 83(C), pages 837-849.
    18. Sharay Astariz & Gregorio Iglesias, 2015. "Enhancing Wave Energy Competitiveness through Co-Located Wind and Wave Energy Farms. A Review on the Shadow Effect," Energies, MDPI, vol. 8(7), pages 1-23, July.
    19. Astariz, S. & Iglesias, G., 2016. "Output power smoothing and reduced downtime period by combined wind and wave energy farms," Energy, Elsevier, vol. 97(C), pages 69-81.
    20. Astariz, S. & Iglesias, G., 2015. "The economics of wave energy: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 397-408.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:373:y:2024:i:c:s0306261924012881. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.