IDEAS home Printed from https://ideas.repec.org/r/eee/renene/v121y2018icp36-44.html
   My bibliography  Save this item

Carbon nanotube nanofluid in enhancing the efficiency of evacuated tube solar collector

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Kaya, Hüseyin & Alkasem, Mohanad & Arslan, Kamil, 2020. "Effect of nanoparticle shape of Al2O3/Pure Water nanofluid on evacuated U-Tube solar collector efficiency," Renewable Energy, Elsevier, vol. 162(C), pages 267-284.
  2. Abu Shadate Faisal Mahamude & Wan Sharuzi Wan Harun & Kumaran Kadirgama & Devarajan Ramasamy & Kaniz Farhana & Khalid Saleh & Talal Yusaf, 2022. "Experimental Study on the Efficiency Improvement of Flat Plate Solar Collectors Using Hybrid Nanofluids Graphene/Waste Cotton," Energies, MDPI, vol. 15(7), pages 1-27, March.
  3. Choudhary, Suraj & Sachdeva, Anish & Kumar, Pramod, 2020. "Influence of stable zinc oxide nanofluid on thermal characteristics of flat plate solar collector," Renewable Energy, Elsevier, vol. 152(C), pages 1160-1170.
  4. Tembhare, Saurabh P. & Barai, Divya P. & Bhanvase, Bharat A., 2022. "Performance evaluation of nanofluids in solar thermal and solar photovoltaic systems: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
  5. Sadeghi, Gholamabbas & Najafzadeh, Mohammad & Ameri, Mehran, 2020. "Thermal characteristics of evacuated tube solar collectors with coil inside: An experimental study and evolutionary algorithms," Renewable Energy, Elsevier, vol. 151(C), pages 575-588.
  6. Pramanik, Anurag & Singh, Harjit & Chandra, Ram & Vijay, Virendra Kumar & Suresh, S., 2022. "Amorphous carbon based nanofluids for direct radiative absorption in solar thermal concentrators – Experimental and computational study," Renewable Energy, Elsevier, vol. 183(C), pages 651-661.
  7. Loni, R. & Askari Asli-Ardeh, E. & Ghobadian, B. & Kasaeian, A.B. & Bellos, Evangelos, 2018. "Thermal performance comparison between Al2O3/oil and SiO2/oil nanofluids in cylindrical cavity receiver based on experimental study," Renewable Energy, Elsevier, vol. 129(PA), pages 652-665.
  8. Vakili, Masoud & Yahyaei, Masood & Ramsay, James & Aghajannezhad, Pouria & Paknezhad, Behnaz, 2021. "Adaptive neuro-fuzzy inference system modeling to predict the performance of graphene nanoplatelets nanofluid-based direct absorption solar collector based on experimental study," Renewable Energy, Elsevier, vol. 163(C), pages 807-824.
  9. Muhammad Kaleem & Muzaffar Ali & Nadeem Ahmed Sheikh & Javed Akhtar & Rasikh Tariq & Jaroslaw Krzywanski, 2023. "Performance Characteristic Analysis of Metallic and Non-Metallic Oxide Nanofluids for a Compound Parabolic Collector: Improvement of Renewable Energy Technologies in Buildings," Energies, MDPI, vol. 16(3), pages 1-24, January.
  10. Gimeno-Furió, Alexandra & Martínez-Cuenca, Raúl & Mondragón, Rosa & Gasulla, Antonio Fabián Vela & Doñate-Buendía, Carlos & Mínguez-Vega, Gladys & Hernández, Leonor, 2020. "Optical characterisation and photothermal conversion efficiency of a water-based carbon nanofluid for direct solar absorption applications," Energy, Elsevier, vol. 212(C).
  11. Huang, Xiaona & Wang, Qiliang & Yang, Honglun & Zhong, Shuai & Jiao, Dongsheng & Zhang, Kaili & Li, Mujun & Pei, Gang, 2019. "Theoretical and experimental studies of impacts of heat shields on heat pipe evacuated tube solar collector," Renewable Energy, Elsevier, vol. 138(C), pages 999-1009.
  12. Yıldırım, Erdal & Yurddaş, Ali, 2021. "Assessments of thermal performance of hybrid and mono nanofluid U-tube solar collector system," Renewable Energy, Elsevier, vol. 171(C), pages 1079-1096.
  13. Feng, Li & Liu, Jiajun & Lu, Haitao & Chen, Yuning & Wu, Shenyu, 2022. "A parametric study on the efficiency of a solar evacuated tube collector using phase change materials: A transient simulation," Renewable Energy, Elsevier, vol. 199(C), pages 745-758.
  14. Selimefendigil, Fatih & Öztop, Hakan F., 2021. "Thermoelectric generation in bifurcating channels and efficient modeling by using hybrid CFD and artificial neural networks," Renewable Energy, Elsevier, vol. 172(C), pages 582-598.
  15. Natividade, Pablo Sampaio Gomes & de Moraes Moura, Gabriel & Avallone, Elson & Bandarra Filho, Enio Pedone & Gelamo, Rogério Valentim & Gonçalves, Júlio Cesar de Souza Inácio, 2019. "Experimental analysis applied to an evacuated tube solar collector equipped with parabolic concentrator using multilayer graphene-based nanofluids," Renewable Energy, Elsevier, vol. 138(C), pages 152-160.
  16. Amir Hossein Arkian & Gholamhassan Najafi & Shiva Gorjian & Reyhaneh Loni & Evangelos Bellos & Talal Yusaf, 2019. "Performance Assessment of a Solar Dryer System Using Small Parabolic Dish and Alumina/Oil Nanofluid: Simulation and Experimental Study," Energies, MDPI, vol. 12(24), pages 1-22, December.
  17. Gao, Datong & Gao, Guangtao & Cao, Jingyu & Zhong, Shuai & Ren, Xiao & Dabwan, Yousef N. & Hu, Maobin & Jiao, Dongsheng & Kwan, Trevor Hocksun & Pei, Gang, 2020. "Experimental and numerical analysis of an efficiently optimized evacuated flat plate solar collector under medium temperature," Applied Energy, Elsevier, vol. 269(C).
  18. Farshad, Seyyed Ali & Sheikholeslami, M., 2019. "Simulation of nanoparticles second law treatment inside a solar collector considering turbulent flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 1-12.
  19. Maraj, Altin & Londo, Andonaq & Gebremedhin, Alemayehu & Firat, Coskun, 2019. "Energy performance analysis of a forced circulation solar water heating system equipped with a heat pipe evacuated tube collector under the Mediterranean climate conditions," Renewable Energy, Elsevier, vol. 140(C), pages 874-883.
  20. Sharafeldin, M.A. & Gróf, Gyula, 2019. "Efficiency of evacuated tube solar collector using WO3/Water nanofluid," Renewable Energy, Elsevier, vol. 134(C), pages 453-460.
  21. Habib Shoeibi & Azad Jarrahian & Mehdi Mehrpooya & Ehsanolah Assaerh & Mohsen Izadi & Fathollah Pourfayaz, 2022. "Mathematical Modeling and Simulation of a Compound Parabolic Concentrators Collector with an Absorber Tube," Energies, MDPI, vol. 16(1), pages 1-20, December.
  22. Sadeghi, Gholamabbas & Safarzadeh, Habibollah & Bahiraei, Mehdi & Ameri, Mehran & Raziani, Mohsen, 2019. "Comparative study of air and argon gases between cover and absorber coil in a cylindrical solar water heater: An experimental study," Renewable Energy, Elsevier, vol. 135(C), pages 426-436.
  23. Sarafraz, M.M. & Safaei, M.R., 2019. "Diurnal thermal evaluation of an evacuated tube solar collector (ETSC) charged with graphene nanoplatelets-methanol nano-suspension," Renewable Energy, Elsevier, vol. 142(C), pages 364-372.
  24. Krzysztof Dutkowski & Marcin Kruzel & Jacek Fiuk & Krzysztof Rokosz & Iwona Michalska-Pożoga & Marcin Szczepanek, 2023. "Experimental Studies on the Influence of Spatial Orientation of a Passive Air Solar Collector on Its Efficiency," Energies, MDPI, vol. 16(10), pages 1-13, May.
  25. Sarafraz, M.M. & Tlili, I. & Tian, Zhe & Bakouri, Mohsen & Safaei, Mohammad Reza, 2019. "Smart optimization of a thermosyphon heat pipe for an evacuated tube solar collector using response surface methodology (RSM)," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 534(C).
  26. Aramesh, M. & Shabani, B., 2020. "On the integration of phase change materials with evacuated tube solar thermal collectors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
  27. Chopra, K. & Tyagi, V.V. & Pandey, A.K. & Sari, Ahmet, 2018. "Global advancement on experimental and thermal analysis of evacuated tube collector with and without heat pipe systems and possible applications," Applied Energy, Elsevier, vol. 228(C), pages 351-389.
  28. Gao, Datong & Wu, Lijun & Hao, Yong & Pei, Gang, 2022. "Ultrahigh-efficiency solar energy harvesting via a non-concentrating evacuated aerogel flat-plate solar collector," Renewable Energy, Elsevier, vol. 196(C), pages 1455-1468.
  29. Ma, Yuan & Rashidi, M.M. & Mohebbi, Rasul & Yang, Zhigang, 2020. "Nanofluid natural convection in a corrugated solar power plant using the hybrid LBM-TVD method," Energy, Elsevier, vol. 199(C).
  30. Choudhary, Suraj & Sachdeva, Anish & Kumar, Pramod, 2020. "Investigation of the stability of MgO nanofluid and its effect on the thermal performance of flat plate solar collector," Renewable Energy, Elsevier, vol. 147(P1), pages 1801-1814.
  31. Bhowmik, Mrinal & Muthukumar, P. & Anandalakshmi, R., 2019. "Experimental based multilayer perceptron approach for prediction of evacuated solar collector performance in humid subtropical regions," Renewable Energy, Elsevier, vol. 143(C), pages 1566-1580.
  32. Fatih Selimefendigil & Mohamed Omri & Walid Aich & Hatem Besbes & Nidhal Ben Khedher & Badr M. Alshammari & Lioua Kolsi, 2023. "Numerical Study of Thermo-Electric Conversion for TEG Mounted Wavy Walled Triangular Vented Cavity Considering Nanofluid with Different-Shaped Nanoparticles," Mathematics, MDPI, vol. 11(2), pages 1-16, January.
  33. Wang, Jin & Yang, Xian & Klemeš, Jiří Jaromír & Tian, Ke & Ma, Ting & Sunden, Bengt, 2023. "A review on nanofluid stability: preparation and application," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.