Experimental based multilayer perceptron approach for prediction of evacuated solar collector performance in humid subtropical regions
Author
Abstract
Suggested Citation
DOI: 10.1016/j.renene.2019.05.093
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Yassin, Mohamed A. & Alazba, A.A. & Mattar, Mohamed A., 2016. "Artificial neural networks versus gene expression programming for estimating reference evapotranspiration in arid climate," Agricultural Water Management, Elsevier, vol. 163(C), pages 110-124.
- Bhowmik, Subrata & Paul, Abhishek & Panua, Rajsekhar & Ghosh, Subrata Kumar & Debroy, Durbadal, 2018. "Performance-exhaust emission prediction of diesosenol fueled diesel engine: An ANN coupled MORSM based optimization," Energy, Elsevier, vol. 153(C), pages 212-222.
- Mohandes, Mohamed A. & Rehman, Shafiqur & Halawani, Talal O., 1998. "A neural networks approach for wind speed prediction," Renewable Energy, Elsevier, vol. 13(3), pages 345-354.
- Sharafeldin, M.A. & Gróf, Gyula, 2019. "Efficiency of evacuated tube solar collector using WO3/Water nanofluid," Renewable Energy, Elsevier, vol. 134(C), pages 453-460.
- Wong, Ka In & Wong, Pak Kin & Cheung, Chun Shun & Vong, Chi Man, 2013. "Modeling and optimization of biodiesel engine performance using advanced machine learning methods," Energy, Elsevier, vol. 55(C), pages 519-528.
- Roy, Sumit & Banerjee, Rahul & Bose, Probir Kumar, 2014. "Performance and exhaust emissions prediction of a CRDI assisted single cylinder diesel engine coupled with EGR using artificial neural network," Applied Energy, Elsevier, vol. 119(C), pages 330-340.
- Korres, Dimitrios N. & Tzivanidis, Christos & Koronaki, Irene P. & Nitsas, Michael T., 2019. "Experimental, numerical and analytical investigation of a U-type evacuated tube collectors' array," Renewable Energy, Elsevier, vol. 135(C), pages 218-231.
- Shamshirgaran, Seyed Reza & Khalaji Assadi, Morteza & Badescu, Viorel & Al-Kayiem, Hussain H., 2018. "Upper limits for the work extraction by nanofluid-filled selective flat-plate solar collectors," Energy, Elsevier, vol. 160(C), pages 875-885.
- Naik, B. Kiran & Bhowmik, Mrinal & Muthukumar, P., 2019. "Experimental investigation and numerical modelling on the performance assessments of evacuated U – Tube solar collector systems," Renewable Energy, Elsevier, vol. 134(C), pages 1344-1361.
- Mahbubul, I.M. & Khan, Mohammed Mumtaz A. & Ibrahim, Nasiru I. & Ali, Hafiz Muhammad & Al-Sulaiman, Fahad A. & Saidur, R., 2018. "Carbon nanotube nanofluid in enhancing the efficiency of evacuated tube solar collector," Renewable Energy, Elsevier, vol. 121(C), pages 36-44.
- Ghobadian, B. & Rahimi, H. & Nikbakht, A.M. & Najafi, G. & Yusaf, T.F., 2009. "Diesel engine performance and exhaust emission analysis using waste cooking biodiesel fuel with an artificial neural network," Renewable Energy, Elsevier, vol. 34(4), pages 976-982.
- Kim, Yong & Seo, Taebeom, 2007. "Thermal performances comparisons of the glass evacuated tube solar collectors with shapes of absorber tube," Renewable Energy, Elsevier, vol. 32(5), pages 772-795.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Arun Uniyal & Yogesh K. Prajapati & Lalit Ranakoti & Prabhakar Bhandari & Tej Singh & Brijesh Gangil & Shubham Sharma & Viyat Varun Upadhyay & Sayed M. Eldin, 2022. "Recent Advancements in Evacuated Tube Solar Water Heaters: A Critical Review of the Integration of Phase Change Materials and Nanofluids with ETCs," Energies, MDPI, vol. 15(23), pages 1-25, November.
- Salari, Ali & Shakibi, Hamid & Soleimanzade, Mohammad Amin & Sadrzadeh, Mohtada & Hakkaki-Fard, Ali, 2024. "Application of machine learning in evaluating and optimizing the hydrogen production performance of a solar-based electrolyzer system," Renewable Energy, Elsevier, vol. 220(C).
- Essa, Mohamed A. & Asal, Manar & Saleh, Mohamed A. & Shaltout, R.E., 2021. "A comparative study of the performance of a novel helical direct flow U-Tube evacuated tube collector," Renewable Energy, Elsevier, vol. 163(C), pages 2068-2080.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Sarafraz, M.M. & Safaei, M.R., 2019. "Diurnal thermal evaluation of an evacuated tube solar collector (ETSC) charged with graphene nanoplatelets-methanol nano-suspension," Renewable Energy, Elsevier, vol. 142(C), pages 364-372.
- Yıldırım, Erdal & Yurddaş, Ali, 2021. "Assessments of thermal performance of hybrid and mono nanofluid U-tube solar collector system," Renewable Energy, Elsevier, vol. 171(C), pages 1079-1096.
- Dey, Suman & Reang, Narath Moni & Majumder, Arindam & Deb, Madhujit & Das, Pankaj Kumar, 2020. "A hybrid ANN-Fuzzy approach for optimization of engine operating parameters of a CI engine fueled with diesel-palm biodiesel-ethanol blend," Energy, Elsevier, vol. 202(C).
- Kaya, Hüseyin & Alkasem, Mohanad & Arslan, Kamil, 2020. "Effect of nanoparticle shape of Al2O3/Pure Water nanofluid on evacuated U-Tube solar collector efficiency," Renewable Energy, Elsevier, vol. 162(C), pages 267-284.
- Evangelisti, Luca & De Lieto Vollaro, Roberto & Asdrubali, Francesco, 2019. "Latest advances on solar thermal collectors: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
- Iftikhar Ahmad & Adil Sana & Manabu Kano & Izzat Iqbal Cheema & Brenno C. Menezes & Junaid Shahzad & Zahid Ullah & Muzammil Khan & Asad Habib, 2021. "Machine Learning Applications in Biofuels’ Life Cycle: Soil, Feedstock, Production, Consumption, and Emissions," Energies, MDPI, vol. 14(16), pages 1-27, August.
- Sasanka Katreddi & Sujan Kasani & Arvind Thiruvengadam, 2022. "A Review of Applications of Artificial Intelligence in Heavy Duty Trucks," Energies, MDPI, vol. 15(20), pages 1-20, October.
- Lotfan, S. & Ghiasi, R. Akbarpour & Fallah, M. & Sadeghi, M.H., 2016. "ANN-based modeling and reducing dual-fuel engine’s challenging emissions by multi-objective evolutionary algorithm NSGA-II," Applied Energy, Elsevier, vol. 175(C), pages 91-99.
- Kshirsagar, Charudatta M. & Anand, Ramanathan, 2017. "Artificial neural network applied forecast on a parametric study of Calophyllum inophyllum methyl ester-diesel engine out responses," Applied Energy, Elsevier, vol. 189(C), pages 555-567.
- Babu, D. & Thangarasu, Vinoth & Ramanathan, Anand, 2020. "Artificial neural network approach on forecasting diesel engine characteristics fuelled with waste frying oil biodiesel," Applied Energy, Elsevier, vol. 263(C).
- Tembhare, Saurabh P. & Barai, Divya P. & Bhanvase, Bharat A., 2022. "Performance evaluation of nanofluids in solar thermal and solar photovoltaic systems: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
- Mehra, Roopesh Kumar & Duan, Hao & Luo, Sijie & Rao, Anas & Ma, Fanhua, 2018. "Experimental and artificial neural network (ANN) study of hydrogen enriched compressed natural gas (HCNG) engine under various ignition timings and excess air ratios," Applied Energy, Elsevier, vol. 228(C), pages 736-754.
- Chopra, K. & Tyagi, V.V. & Pandey, A.K. & Sari, Ahmet, 2018. "Global advancement on experimental and thermal analysis of evacuated tube collector with and without heat pipe systems and possible applications," Applied Energy, Elsevier, vol. 228(C), pages 351-389.
- Aliakbari, Karim & Ebrahimi-Moghadam, Amir & Pahlavanzadeh, Mohammadsadegh & Moradi, Reza, 2023. "Performance characteristics and exhaust emissions of a single-cylinder diesel engine for different fuels: Experimental investigation and artificial intelligence network," Energy, Elsevier, vol. 284(C).
- Bendu, Harisankar & Deepak, B.B.V.L. & Murugan, S., 2017. "Multi-objective optimization of ethanol fuelled HCCI engine performance using hybrid GRNN–PSO," Applied Energy, Elsevier, vol. 187(C), pages 601-611.
- Gholipour, Shayan & Afrand, Masoud & Kalbasi, Rasool, 2020. "Improving the efficiency of vacuum tube collectors using new absorbent tubes arrangement: Introducing helical coil and spiral tube adsorbent tubes," Renewable Energy, Elsevier, vol. 151(C), pages 772-781.
- Subrata Bhowmik & Rajsekhar Panua & Subrata K Ghosh & Abhishek Paul & Durbadal Debroy, 2018. "Prediction of performance and exhaust emissions of diesel engine fuelled with adulterated diesel: An artificial neural network assisted fuzzy-based topology optimization," Energy & Environment, , vol. 29(8), pages 1413-1437, December.
- Maraj, Altin & Londo, Andonaq & Gebremedhin, Alemayehu & Firat, Coskun, 2019. "Energy performance analysis of a forced circulation solar water heating system equipped with a heat pipe evacuated tube collector under the Mediterranean climate conditions," Renewable Energy, Elsevier, vol. 140(C), pages 874-883.
- Essa, Mohamed A. & Asal, Manar & Saleh, Mohamed A. & Shaltout, R.E., 2021. "A comparative study of the performance of a novel helical direct flow U-Tube evacuated tube collector," Renewable Energy, Elsevier, vol. 163(C), pages 2068-2080.
- Sadeghi, Gholamabbas & Najafzadeh, Mohammad & Ameri, Mehran, 2020. "Thermal characteristics of evacuated tube solar collectors with coil inside: An experimental study and evolutionary algorithms," Renewable Energy, Elsevier, vol. 151(C), pages 575-588.
More about this item
Keywords
U tube-evacuated solar collectors; Experimental analysis; Useful heat gain; Thermal efficiency; Multilayer perceptron; Trade-off analysis;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:143:y:2019:i:c:p:1566-1580. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.