IDEAS home Printed from https://ideas.repec.org/r/eee/reensy/v92y2007i6p745-754.html
   My bibliography  Save this item

A unified framework for risk and vulnerability analysis covering both safety and security

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Liangliang Song & Qiming Li & George F. List & Yongliang Deng & Ping Lu, 2017. "Using an AHP-ISM Based Method to Study the Vulnerability Factors of Urban Rail Transit System," Sustainability, MDPI, vol. 9(6), pages 1-16, June.
  2. Selvik, J.T. & Aven, T., 2011. "A framework for reliability and risk centered maintenance," Reliability Engineering and System Safety, Elsevier, vol. 96(2), pages 324-331.
  3. Morgan Bazilian & Debabrata Chattopadhyay, 2015. "Considering Power System Planning in Fragile and Conflict States," Cambridge Working Papers in Economics 1530, Faculty of Economics, University of Cambridge.
  4. Aven, Terje, 2011. "Selective critique of risk assessments with recommendations for improving methodology and practise," Reliability Engineering and System Safety, Elsevier, vol. 96(5), pages 509-514.
  5. Kriaa, Siwar & Pietre-Cambacedes, Ludovic & Bouissou, Marc & Halgand, Yoran, 2015. "A survey of approaches combining safety and security for industrial control systems," Reliability Engineering and System Safety, Elsevier, vol. 139(C), pages 156-178.
  6. Stef Janssen & Alexei Sharpanskykh & Richard Curran, 2019. "AbSRiM: An Agent‐Based Security Risk Management Approach for Airport Operations," Risk Analysis, John Wiley & Sons, vol. 39(7), pages 1582-1596, July.
  7. Argenti, Francesca & Landucci, Gabriele & Reniers, Genserik & Cozzani, Valerio, 2018. "Vulnerability assessment of chemical facilities to intentional attacks based on Bayesian Network," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 515-530.
  8. Tsavdaroglou, Margarita & Al-Jibouri, Saad H.S. & Bles, Thomas & Halman, Johannes I.M., 2018. "Proposed methodology for risk analysis of interdependent critical infrastructures to extreme weather events," International Journal of Critical Infrastructure Protection, Elsevier, vol. 21(C), pages 57-71.
  9. Johansson, Jonas & Hassel, Henrik, 2010. "An approach for modelling interdependent infrastructures in the context of vulnerability analysis," Reliability Engineering and System Safety, Elsevier, vol. 95(12), pages 1335-1344.
  10. Longxia Qian & Hongrui Wang & Keni Zhang, 2014. "Evaluation Criteria and Model for Risk Between Water Supply and Water Demand and its Application in Beijing," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(13), pages 4433-4447, October.
  11. Aven, Terje, 2010. "Some reflections on uncertainty analysis and management," Reliability Engineering and System Safety, Elsevier, vol. 95(3), pages 195-201.
  12. Aven, Terje, 2012. "The risk concept—historical and recent development trends," Reliability Engineering and System Safety, Elsevier, vol. 99(C), pages 33-44.
  13. Dong, Mingxin & Zhang, Zhen & Liu, Yi & Zhao, Dong Feng & Meng, Yifei & Shi, Jihao, 2023. "Playing Bayesian Stackelberg game model for optimizing the vulnerability level of security incident system in petrochemical plants," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
  14. Aven, T. & Flage, R., 2009. "Use of decision criteria based on expected values to support decision-making in a production assurance and safety setting," Reliability Engineering and System Safety, Elsevier, vol. 94(9), pages 1491-1498.
  15. E P Ford & T Aven & W Røed & H S Wiencke, 2008. "An approach for evaluating and selecting methods for risk and vulnerability assessments," Journal of Risk and Reliability, , vol. 222(3), pages 315-326, September.
  16. Georgios Kavallieratos & Sokratis Katsikas & Vasileios Gkioulos, 2020. "Cybersecurity and Safety Co-Engineering of Cyberphysical Systems—A Comprehensive Survey," Future Internet, MDPI, vol. 12(4), pages 1-17, April.
  17. Longxia Qian & Ren Zhang & Mei Hong & Hongrui Wang & Lizhi Yang, 2016. "A new multiple integral model for water shortage risk assessment and its application in Beijing, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 80(1), pages 43-67, January.
  18. Alanen, Jarmo & Linnosmaa, Joonas & Malm, Timo & Papakonstantinou, Nikolaos & Ahonen, Toni & Heikkilä, Eetu & Tiusanen, Risto, 2022. "Hybrid ontology for safety, security, and dependability risk assessments and Security Threat Analysis (STA) method for industrial control systems," Reliability Engineering and System Safety, Elsevier, vol. 220(C).
  19. Terje Aven & Seth Guikema, 2015. "On the Concept and Definition of Terrorism Risk," Risk Analysis, John Wiley & Sons, vol. 35(12), pages 2162-2171, December.
  20. Annika Djurle & Beth Young & Anna Berlin & Ivar Vågsholm & Anne-Lie Blomström & Jim Nygren & Anders Kvarnheden, 2022. "Addressing biohazards to food security in primary production," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 14(6), pages 1475-1497, December.
  21. Aven, Terje, 2013. "Practical implications of the new risk perspectives," Reliability Engineering and System Safety, Elsevier, vol. 115(C), pages 136-145.
  22. Piètre-Cambacédès, L. & Bouissou, M., 2013. "Cross-fertilization between safety and security engineering," Reliability Engineering and System Safety, Elsevier, vol. 110(C), pages 110-126.
  23. Aven, Terje, 2010. "On how to define, understand and describe risk," Reliability Engineering and System Safety, Elsevier, vol. 95(6), pages 623-631.
  24. Tang, Yang & Liu, Qingyou & Jing, Jiajia & Yang, Yan & Zou, Zhengwei, 2017. "A framework for identification of maintenance significant items in reliability centered maintenance," Energy, Elsevier, vol. 118(C), pages 1295-1303.
  25. Aven, Terje, 2009. "Identification of safety and security critical systems and activities," Reliability Engineering and System Safety, Elsevier, vol. 94(2), pages 404-411.
  26. Cagno, Enrico & De Ambroggi, Massimiliano & Grande, Ottavio & Trucco, Paolo, 2011. "Risk analysis of underground infrastructures in urban areas," Reliability Engineering and System Safety, Elsevier, vol. 96(1), pages 139-148.
  27. Alexandros Korkovelos & Dimitrios Mentis & Morgan Bazilian & Mark Howells & Anwar Saraj & Sulaiman Fayez Hotaki & Fanny Missfeldt-Ringius, 2020. "Supporting Electrification Policy in Fragile States: A Conflict-Adjusted Geospatial Least Cost Approach for Afghanistan," Sustainability, MDPI, vol. 12(3), pages 1-34, January.
  28. Marcin Śliwiński & Emilian Piesik, 2021. "Designing Control and Protection Systems with Regard to Integrated Functional Safety and Cybersecurity Aspects," Energies, MDPI, vol. 14(8), pages 1-22, April.
  29. Aven, Terje, 2013. "A conceptual framework for linking risk and the elements of the data–information–knowledge–wisdom (DIKW) hierarchy," Reliability Engineering and System Safety, Elsevier, vol. 111(C), pages 30-36.
  30. Terje Aven & Ortwin Renn, 2015. "An Evaluation of the Treatment of Risk and Uncertainties in the IPCC Reports on Climate Change," Risk Analysis, John Wiley & Sons, vol. 35(4), pages 701-712, April.
  31. Szczygielski, Jan Jakub & Brzeszczyński, Janusz & Charteris, Ailie & Bwanya, Princess Rutendo, 2022. "The COVID-19 storm and the energy sector: The impact and role of uncertainty," Energy Economics, Elsevier, vol. 109(C).
  32. Anna E. Wolnowska & Lech Kasyk, 2021. "Identification of Threats in the Supply Chain of a Production Process," European Research Studies Journal, European Research Studies Journal, vol. 0(2B), pages 568-587.
  33. Aven, Terje, 2012. "On the link between risk and exposure," Reliability Engineering and System Safety, Elsevier, vol. 106(C), pages 191-199.
  34. Marroni, Giulia & Casini, Leonardo & Bartolucci, Andrea & Kuipers, Sanneke & Casson Moreno, Valeria & Landucci, Gabriele, 2024. "Development of fragility models for process equipment affected by physical security attacks," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
  35. Nai Fovino, Igor & Masera, Marcelo & De Cian, Alessio, 2009. "Integrating cyber attacks within fault trees," Reliability Engineering and System Safety, Elsevier, vol. 94(9), pages 1394-1402.
  36. Reniers, Genserik & Soudan, Karel, 2010. "A game-theoretical approach for reciprocal security-related prevention investment decisions," Reliability Engineering and System Safety, Elsevier, vol. 95(1), pages 1-9.
  37. Henrik Hassel, 2012. "Risk and vulnerability analysis in practice: evaluation of analyses conducted in Swedish municipalities," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 63(2), pages 605-628, September.
  38. Øystein Amundrud & Terje Aven & Roger Flage, 2017. "How the definition of security risk can be made compatible with safety definitions," Journal of Risk and Reliability, , vol. 231(3), pages 286-294, June.
  39. Zhang, Jing & Zhuang, Jun, 2019. "Modeling a multi-target attacker-defender game with multiple attack types," Reliability Engineering and System Safety, Elsevier, vol. 185(C), pages 465-475.
  40. Guikema, Seth D. & Aven, Terje, 2010. "Assessing risk from intelligent attacks: A perspective on approaches," Reliability Engineering and System Safety, Elsevier, vol. 95(5), pages 478-483.
  41. Casson Moreno, Valeria & Marroni, Giulia & Landucci, Gabriele, 2022. "Probabilistic assessment aimed at the evaluation of escalating scenarios in process facilities combining safety and security barriers," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
  42. Scholz, Roland W. & Czichos, Reiner & Parycek, Peter & Lampoltshammer, Thomas J., 2020. "Organizational vulnerability of digital threats: A first validation of an assessment method," European Journal of Operational Research, Elsevier, vol. 282(2), pages 627-643.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.