IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v111y2013icp30-36.html
   My bibliography  Save this article

A conceptual framework for linking risk and the elements of the data–information–knowledge–wisdom (DIKW) hierarchy

Author

Listed:
  • Aven, Terje

Abstract

There are numerous definitions of the risk concept. When studying the suitability of these definitions one key issue is the degree that the risk concept is able to reflect the data (D), information (I), knowledge (K) and wisdom (W) available, i.e. the various elements of the well-known DIKW hierarchy. In this paper we present and discuss a structure (conceptual framework) for linking some common risk perspectives and the DIKW elements. The structure is based on the following main ideas: Data=the input to the risk assessment, information=the risk description, knowledge (for the decision maker)=understanding the risk description, knowledge (for analysts)=understanding how to do the risk assessment and understanding the risk description, wisdom (for the decision maker)=the ability to use the results of the analysis in the right way and wisdom (for analysts)=the ability to present the results of the analysis in the right way. The principal aim of this paper is to contribute to a better understanding of the link between the risk concept and the DIKW elements, in order to strengthen the foundations of the meaning and characterisation of risk, and in this way provide a basis for improved risk management.

Suggested Citation

  • Aven, Terje, 2013. "A conceptual framework for linking risk and the elements of the data–information–knowledge–wisdom (DIKW) hierarchy," Reliability Engineering and System Safety, Elsevier, vol. 111(C), pages 30-36.
  • Handle: RePEc:eee:reensy:v:111:y:2013:i:c:p:30-36
    DOI: 10.1016/j.ress.2012.09.014
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S095183201200213X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2012.09.014?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Terje Aven & Ortwin Renn, 2009. "On risk defined as an event where the outcome is uncertain," Journal of Risk Research, Taylor & Francis Journals, vol. 12(1), pages 1-11, January.
    2. Chaim Zins, 2007. "Conceptual approaches for defining data, information, and knowledge," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 58(4), pages 479-493, February.
    3. Milan Zeleny, 2006. "Knowledge-information autopoietic cycle: towards the wisdom systems," International Journal of Management and Decision Making, Inderscience Enterprises Ltd, vol. 7(1), pages 3-18.
    4. Aven, Terje, 2010. "On how to define, understand and describe risk," Reliability Engineering and System Safety, Elsevier, vol. 95(6), pages 623-631.
    5. Aven, Terje, 2012. "The risk concept—historical and recent development trends," Reliability Engineering and System Safety, Elsevier, vol. 99(C), pages 33-44.
    6. Aven, Terje & Zio, Enrico, 2011. "Some considerations on the treatment of uncertainties in risk assessment for practical decision making," Reliability Engineering and System Safety, Elsevier, vol. 96(1), pages 64-74.
    7. Aven, Terje, 2007. "A unified framework for risk and vulnerability analysis covering both safety and security," Reliability Engineering and System Safety, Elsevier, vol. 92(6), pages 745-754.
    8. Terje Aven & Ortwin Renn, 2010. "Risk Management and Governance," Risk, Governance and Society, Springer, number 978-3-642-13926-0, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bing Wu & Huibin Tian & Xinping Yan & C. Guedes Soares, 2020. "A probabilistic consequence estimation model for collision accidents in the downstream of Yangtze River using Bayesian Networks," Journal of Risk and Reliability, , vol. 234(2), pages 422-436, April.
    2. Ruponen, Pekka & Montewka, Jakub & Tompuri, Markus & Manderbacka, Teemu & Hirdaris, Spyros, 2022. "A framework for onboard assessment and monitoring of flooding risk due to open watertight doors for passenger ships," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    3. Montewka, Jakub & Goerlandt, Floris & Kujala, Pentti, 2014. "On a systematic perspective on risk for formal safety assessment (FSA)," Reliability Engineering and System Safety, Elsevier, vol. 127(C), pages 77-85.
    4. Montewka, Jakub & Ehlers, Sören & Goerlandt, Floris & Hinz, Tomasz & Tabri, Kristjan & Kujala, Pentti, 2014. "A framework for risk assessment for maritime transportation systems—A case study for open sea collisions involving RoPax vessels," Reliability Engineering and System Safety, Elsevier, vol. 124(C), pages 142-157.
    5. Aven, Terje, 2013. "Practical implications of the new risk perspectives," Reliability Engineering and System Safety, Elsevier, vol. 115(C), pages 136-145.
    6. Seth Guikema, 2020. "Artificial Intelligence for Natural Hazards Risk Analysis: Potential, Challenges, and Research Needs," Risk Analysis, John Wiley & Sons, vol. 40(6), pages 1117-1123, June.
    7. Yury Nurulin & Inga Skvortsova & Iosif Tukkel & Marko Torkkeli, 2019. "Role of Knowledge in Management of Innovation," Resources, MDPI, vol. 8(2), pages 1-12, May.
    8. Tasneem Bani-Mustafa & Nicola Pedroni & Enrico Zio & Dominique Vasseur & Francois Beaudouin, 2020. "A hierarchical tree-based decision-making approach for assessing the relative trustworthiness of risk assessment models," Journal of Risk and Reliability, , vol. 234(6), pages 748-763, December.
    9. Aven, Terje & Ylönen, Marja, 2019. "The strong power of standards in the safety and risk fields: A threat to proper developments of these fields?," Reliability Engineering and System Safety, Elsevier, vol. 189(C), pages 279-286.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aven, Terje, 2013. "Practical implications of the new risk perspectives," Reliability Engineering and System Safety, Elsevier, vol. 115(C), pages 136-145.
    2. Veland, H. & Aven, T., 2013. "Risk communication in the light of different risk perspectives," Reliability Engineering and System Safety, Elsevier, vol. 110(C), pages 34-40.
    3. Aven, Terje, 2012. "On the link between risk and exposure," Reliability Engineering and System Safety, Elsevier, vol. 106(C), pages 191-199.
    4. Aven, Terje, 2012. "The risk concept—historical and recent development trends," Reliability Engineering and System Safety, Elsevier, vol. 99(C), pages 33-44.
    5. Nguyen, Son & Chen, Peggy Shu-Ling & Du, Yuquan & Shi, Wenming, 2019. "A quantitative risk analysis model with integrated deliberative Delphi platform for container shipping operational risks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 129(C), pages 203-227.
    6. Goerlandt, Floris & Montewka, Jakub, 2015. "Maritime transportation risk analysis: Review and analysis in light of some foundational issues," Reliability Engineering and System Safety, Elsevier, vol. 138(C), pages 115-134.
    7. Aven, Terje, 2011. "Selective critique of risk assessments with recommendations for improving methodology and practise," Reliability Engineering and System Safety, Elsevier, vol. 96(5), pages 509-514.
    8. Terje Aven & Ortwin Renn, 2015. "An Evaluation of the Treatment of Risk and Uncertainties in the IPCC Reports on Climate Change," Risk Analysis, John Wiley & Sons, vol. 35(4), pages 701-712, April.
    9. Peng Hou & Xiaojian Yi & Haiping Dong, 2020. "A Spatial Statistic Based Risk Assessment Approach to Prioritize the Pipeline Inspection of the Pipeline Network," Energies, MDPI, vol. 13(3), pages 1-16, February.
    10. Tang, Yang & Liu, Qingyou & Jing, Jiajia & Yang, Yan & Zou, Zhengwei, 2017. "A framework for identification of maintenance significant items in reliability centered maintenance," Energy, Elsevier, vol. 118(C), pages 1295-1303.
    11. Aven, Terje & Krohn, Bodil S., 2014. "A new perspective on how to understand, assess and manage risk and the unforeseen," Reliability Engineering and System Safety, Elsevier, vol. 121(C), pages 1-10.
    12. Szczygielski, Jan Jakub & Brzeszczyński, Janusz & Charteris, Ailie & Bwanya, Princess Rutendo, 2022. "The COVID-19 storm and the energy sector: The impact and role of uncertainty," Energy Economics, Elsevier, vol. 109(C).
    13. Montewka, Jakub & Goerlandt, Floris & Kujala, Pentti, 2014. "On a systematic perspective on risk for formal safety assessment (FSA)," Reliability Engineering and System Safety, Elsevier, vol. 127(C), pages 77-85.
    14. Ruipeng Tong & Cunli Zhai & Qingli Jia & Chunlin Wu & Yan Liu & Surui Xue, 2018. "An Interactive Model among Potential Human Risk Factors: 331 Cases of Coal Mine Roof Accidents in China," IJERPH, MDPI, vol. 15(6), pages 1-20, June.
    15. Aven, Terje, 2010. "Some reflections on uncertainty analysis and management," Reliability Engineering and System Safety, Elsevier, vol. 95(3), pages 195-201.
    16. Bjerga, Torbjørn & Aven, Terje, 2015. "Adaptive risk management using new risk perspectives – an example from the oil and gas industry," Reliability Engineering and System Safety, Elsevier, vol. 134(C), pages 75-82.
    17. Zio, E., 2018. "The future of risk assessment," Reliability Engineering and System Safety, Elsevier, vol. 177(C), pages 176-190.
    18. Bing Wu & Huibin Tian & Xinping Yan & C. Guedes Soares, 2020. "A probabilistic consequence estimation model for collision accidents in the downstream of Yangtze River using Bayesian Networks," Journal of Risk and Reliability, , vol. 234(2), pages 422-436, April.
    19. Grzegorz Drozdowski & Joanna Rogozińska-Mitrut & Jacek Stasiak, 2021. "The Empirical Analysis of the Core Competencies of the Company’s Resource Management Risk. Preliminary Study," Risks, MDPI, vol. 9(6), pages 1-12, June.
    20. Yanwei Li & Araz Taeihagh & Martin de Jong & Andreas Klinke, 2021. "Toward a Commonly Shared Public Policy Perspective for Analyzing Risk Coping Strategies," Risk Analysis, John Wiley & Sons, vol. 41(3), pages 519-532, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:111:y:2013:i:c:p:30-36. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.