My bibliography
Save this item
Forecasting German car sales using Google data and multivariate models
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Dean Fantazzini & Nikita Kolodin, 2020.
"Does the Hashrate Affect the Bitcoin Price?,"
JRFM, MDPI, vol. 13(11), pages 1-29, October.
- Fantazzini, Dean & Kolodin, Nikita, 2020. "Does the hashrate affect the bitcoin price?," MPRA Paper 103812, University Library of Munich, Germany.
- Zhou, Huimin & Dang, Yaoguo & Yang, Yingjie & Wang, Junjie & Yang, Shaowen, 2023. "An optimized nonlinear time-varying grey Bernoulli model and its application in forecasting the stock and sales of electric vehicles," Energy, Elsevier, vol. 263(PC).
- Dean Fantazzini & Julia Pushchelenko & Alexey Mironenkov & Alexey Kurbatskii, 2021.
"Forecasting Internal Migration in Russia Using Google Trends: Evidence from Moscow and Saint Petersburg,"
Forecasting, MDPI, vol. 3(4), pages 1-30, October.
- Fantazzini, Dean & Pushchelenko, Julia & Mironenkov, Alexey & Kurbatskii, Alexey, 2021. "Forecasting internal migration in Russia using Google Trends: Evidence from Moscow and Saint Petersburg," MPRA Paper 110452, University Library of Munich, Germany.
- Uddin, Gazi Salah & Tang, Ou & Sahamkhadam, Maziar & Taghizadeh-Hesary, Farhad & Yahya, Muhammad & Cerin, Pontus & Rehme, Jakob, 2021. "Analysis of Forecasting Models in an Electricity Market under Volatility," ADBI Working Papers 1212, Asian Development Bank Institute.
- van der Wielen, Wouter & Barrios, Salvador, 2021.
"Economic sentiment during the COVID pandemic: Evidence from search behaviour in the EU,"
Journal of Economics and Business, Elsevier, vol. 115(C).
- VAN DER WIELEN Wouter & BARRIOS Salvador, 2020. "Fear and Employment During the COVID Pandemic: Evidence from Search Behaviour in the EU," JRC Working Papers on Taxation & Structural Reforms 2020-08, Joint Research Centre.
- Schaer, Oliver & Kourentzes, Nikolaos & Fildes, Robert, 2019. "Demand forecasting with user-generated online information," International Journal of Forecasting, Elsevier, vol. 35(1), pages 197-212.
- Fantazzini, Dean & Nigmatullin, Erik & Sukhanovskaya, Vera & Ivliev, Sergey, 2016.
"Everything you always wanted to know about bitcoin modelling but were afraid to ask. I,"
Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 44, pages 5-24.
- Fantazzini, Dean & Nigmatullin, Erik & Sukhanovskaya, Vera & Ivliev, Sergey, 2016. "Everything you always wanted to know about bitcoin modelling but were afraid to ask," MPRA Paper 71946, University Library of Munich, Germany, revised 2016.
- Nymand-Andersen, Per & Pantelidis, Emmanouil, 2018. "Google econometrics: nowcasting euro area car sales and big data quality requirements," Statistics Paper Series 30, European Central Bank.
- Park, Jiyoun & Nam, Changi & Kim, Hye-jin, 2019. "Exploring the key services and players in the smart car market," Telecommunications Policy, Elsevier, vol. 43(10).
- Fantazzini, Dean, 2020.
"Short-term forecasting of the COVID-19 pandemic using Google Trends data: Evidence from 158 countries,"
Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 59, pages 33-54.
- Fantazzini, Dean, 2020. "Short-term forecasting of the COVID-19 pandemic using Google Trends data: Evidence from 158 countries," MPRA Paper 102315, University Library of Munich, Germany.
- Pirschel, Inske, 2016. "Forecasting euro area recessions in real-time," Kiel Working Papers 2020, Kiel Institute for the World Economy (IfW Kiel).
- Liwen Ling & Dabin Zhang & Shanying Chen & Amin W. Mugera, 2020. "Can online search data improve the forecast accuracy of pork price in China?," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(4), pages 671-686, July.
- M. Elshendy & A. Fronzetti Colladon & E. Battistoni & P. A. Gloor, 2021. "Using four different online media sources to forecast the crude oil price," Papers 2105.09154, arXiv.org.
- Chuan Zhang & Yu-Xin Tian & Ling-Wei Fan, 2020. "Improving the Bass model’s predictive power through online reviews, search traffic and macroeconomic data," Annals of Operations Research, Springer, vol. 295(2), pages 881-922, December.
- Boone, Tonya & Ganeshan, Ram & Jain, Aditya & Sanders, Nada R., 2019. "Forecasting sales in the supply chain: Consumer analytics in the big data era," International Journal of Forecasting, Elsevier, vol. 35(1), pages 170-180.
- Havranek, Tomas & Zeynalov, Ayaz, 2018. "Forecasting Tourist Arrivals with Google Trends and Mixed Frequency Data," EconStor Preprints 187420, ZBW - Leibniz Information Centre for Economics.
- Park, Jiyoun & Nam, Changi & Kim, Hye-jin & Kim, Seongcheol, 2018. "What are the relative importance of smart car utilities from consumer perspective and who will lead them?," 22nd ITS Biennial Conference, Seoul 2018. Beyond the boundaries: Challenges for business, policy and society 190334, International Telecommunications Society (ITS).
- Fantazzini, Dean & Shangina, Tamara, 2019.
"The importance of being informed: forecasting market risk measures for the Russian RTS index future using online data and implied volatility over two decades,"
Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 55, pages 5-31.
- Fantazzini, Dean & Shangina, Tamara, 2019. "The importance of being informed: forecasting market risk measures for the Russian RTS index future using online data and implied volatility over two decades," MPRA Paper 95992, University Library of Munich, Germany.
- Tomas Havranek & Ayaz Zeynalov, 2021.
"Forecasting tourist arrivals: Google Trends meets mixed-frequency data,"
Tourism Economics, , vol. 27(1), pages 129-148, February.
- Havranek, Tomas & Zeynalov, Ayaz, 2018. "Forecasting Tourist Arrivals: Google Trends Meets Mixed Frequency Data," MPRA Paper 90205, University Library of Munich, Germany.
- Yong Zhang & Miner Zhong & Nana Geng & Yunjian Jiang, 2017. "Forecasting electric vehicles sales with univariate and multivariate time series models: The case of China," PLOS ONE, Public Library of Science, vol. 12(5), pages 1-15, May.
- Lycheva, Maria & Mironenkov, Alexey & Kurbatskii, Alexey & Fantazzini, Dean, 2022.
"Forecasting oil prices with penalized regressions, variance risk premia and Google data,"
Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 68, pages 28-49.
- Fantazzini, Dean & Kurbatskii, Alexey & Mironenkov, Alexey & Lycheva, Maria, 2022. "Forecasting oil prices with penalized regressions, variance risk premia and Google data," MPRA Paper 118239, University Library of Munich, Germany.
- Tendai Makoni & Delson Chikobvu, 2023. "Assessing and Forecasting the Long-Term Impact of the Global Financial Crisis on New Car Sales in South Africa," Data, MDPI, vol. 8(5), pages 1-16, April.
- Takumi Kato, 2022. "Demand Prediction in the Automobile Industry Independent of Big Data," Annals of Data Science, Springer, vol. 9(2), pages 249-270, April.
- AGARWAL Reeti & MEHROTRA Ankit, 2023. "Influence Of Online Forums On Customers’ Buying Decisions: A Machine Learning Approach," Studies in Business and Economics, Lucian Blaga University of Sibiu, Faculty of Economic Sciences, vol. 18(3), pages 5-23, December.
- Juan Manuel García Sánchez & Xavier Vilasís Cardona & Alexandre Lerma Martín, 2022. "Influence of Car Configurator Webpage Data from Automotive Manufacturers on Car Sales by Means of Correlation and Forecasting," Forecasting, MDPI, vol. 4(3), pages 1-20, July.
- Johannes Habel & Sascha Alavi & Nicolas Heinitz, 2023. "A theory of predictive sales analytics adoption," AMS Review, Springer;Academy of Marketing Science, vol. 13(1), pages 34-54, June.
- Yakubu, Hanan & Kwong, C.K., 2021. "Forecasting the importance of product attributes using online customer reviews and Google Trends," Technological Forecasting and Social Change, Elsevier, vol. 171(C).
- Meshcheryakov, Artem & Winters, Drew B., 2022. "Retail investor attention and the limit order book: Intraday analysis of attention-based trading," International Review of Financial Analysis, Elsevier, vol. 81(C).
- Homolka, Lubor & Ngo, Vu Minh & Pavelková, Drahomíra & Le, Bach Tuan & Dehning, Bruce, 2020. "Short- and medium-term car registration forecasting based on selected macro and socio-economic indicators in European countries," Research in Transportation Economics, Elsevier, vol. 80(C).
- Jolana Stejskalova, 2023. "We investigated the link between stock returns of automobile companies, Fama French factors, and behavioral attention, represented by demand for a selected car brand belonging to an automobile company," Journal of Economics / Ekonomicky casopis, Institute of Economic Research, Slovak Academy of Sciences, vol. 71(3), pages 202-221, March.