Using four different online media sources to forecast the crude oil price
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Meltem Gulenay Chadwick & Gonul Sengul, 2015.
"Nowcasting the Unemployment Rate in Turkey : Let's ask Google,"
Central Bank Review, Research and Monetary Policy Department, Central Bank of the Republic of Turkey, vol. 15(3), pages 15-40.
- Meltem Gulenay Chadwick & Gonul Sengul, 2012. "Nowcasting Unemployment Rate in Turkey : Let's Ask Google," Working Papers 1218, Research and Monetary Policy Department, Central Bank of the Republic of Turkey.
- Timm O. Sprenger & Andranik Tumasjan & Philipp G. Sandner & Isabell M. Welpe, 2014. "Tweets and Trades: the Information Content of Stock Microblogs," European Financial Management, European Financial Management Association, vol. 20(5), pages 926-957, November.
- Krichene, Noureddine, 2002. "World crude oil and natural gas: a demand and supply model," Energy Economics, Elsevier, vol. 24(6), pages 557-576, November.
- Jaroslav Pavlicek & Ladislav Kristoufek, 2015.
"Nowcasting Unemployment Rates with Google Searches: Evidence from the Visegrad Group Countries,"
PLOS ONE, Public Library of Science, vol. 10(5), pages 1-11, May.
- Pavlicek, Jaroslav & Kristoufek, Ladislav, 2015. "Nowcasting unemployment rates with Google searches: Evidence from the Visegrad Group countries," FinMaP-Working Papers 34, Collaborative EU Project FinMaP - Financial Distortions and Macroeconomic Performance: Expectations, Constraints and Interaction of Agents.
- Onook Oh & Manish Agrawal & H. Raghav Rao, 2011. "Information control and terrorism: Tracking the Mumbai terrorist attack through twitter," Information Systems Frontiers, Springer, vol. 13(1), pages 33-43, March.
- Giannone, Domenico & Reichlin, Lucrezia & Small, David, 2008.
"Nowcasting: The real-time informational content of macroeconomic data,"
Journal of Monetary Economics, Elsevier, vol. 55(4), pages 665-676, May.
- Reichlin, Lucrezia & Giannone, Domenico & Small, David, 2005. "Nowcasting GDP and Inflation: The Real Time Informational Content of Macroeconomic Data Releases," CEPR Discussion Papers 5178, C.E.P.R. Discussion Papers.
- Domenico Giannone & Lucrezia Reichlin & David H. Small, 2005. "Nowcasting GDP and inflation: the real-time informational content of macroeconomic data releases," Finance and Economics Discussion Series 2005-42, Board of Governors of the Federal Reserve System (U.S.).
- Domenico Giannone & Lucrezia Reichlin & David H Small, 2007. "Nowcasting GDP and Inflation: The Real-Time Informational Content of Macroeconomic Data Releases," Money Macro and Finance (MMF) Research Group Conference 2006 164, Money Macro and Finance Research Group.
- Chevillon, Guillaume & Rifflart, Christine, 2009.
"Physical market determinants of the price of crude oil and the market premium,"
Energy Economics, Elsevier, vol. 31(4), pages 537-549, July.
- Chevillon, Guillaume & Rifflart, Christine, 2007. "Physical Market Determinants of the Price of Crude Oil and the Market Premium," ESSEC Working Papers DR 07020, ESSEC Research Center, ESSEC Business School.
- Márton Mestyán & Taha Yasseri & János Kertész, 2013. "Early Prediction of Movie Box Office Success Based on Wikipedia Activity Big Data," PLOS ONE, Public Library of Science, vol. 8(8), pages 1-8, August.
- Shambora, William E. & Rossiter, Rosemary, 2007. "Are there exploitable inefficiencies in the futures market for oil?," Energy Economics, Elsevier, vol. 29(1), pages 18-27, January.
- Goldfarb, Avi & Greenstein, Shane M. & Tucker, Catherine E. (ed.), 2015. "Economic Analysis of the Digital Economy," National Bureau of Economic Research Books, University of Chicago Press, number 9780226206981, August.
- Bassam Fattouh, Lutz Kilian, and Lavan Mahadeva, 2013.
"The Role of Speculation in Oil Markets: What Have We Learned So Far?,"
The Energy Journal, International Association for Energy Economics, vol. 0(Number 3).
- Bassam Fattouh & Lutz Kilian & Lavan Mahadeva, 2013. "The Role of Speculation in Oil Markets: What Have We Learned So Far?," The Energy Journal, , vol. 34(3), pages 7-33, July.
- Kilian, Lutz & Fattouh, Bassam & Mahadeva, Lavan, 2012. "The Role of Speculation in Oil Markets: What Have We Learned So Far?," CEPR Discussion Papers 8916, C.E.P.R. Discussion Papers.
- Cheong, Chin Wen, 2009. "Modeling and forecasting crude oil markets using ARCH-type models," Energy Policy, Elsevier, vol. 37(6), pages 2346-2355, June.
- Selim Elekdag & René Lalonde & Douglas Laxton & Dirk Muir & Paolo Pesenti, 2008.
"Oil Price Movements and the Global Economy: A Model-Based Assessment,"
IMF Staff Papers, Palgrave Macmillan, vol. 55(2), pages 297-311, June.
- Selim Elekdag & René Lalonde & Douglas Laxton & Dirk Muir & Paolo Pesenti, 2007. "Oil Price Movements and the Global Economy: A Model-Based Assessment," Staff Working Papers 07-34, Bank of Canada.
- Pesenti, Paolo & Laxton, Doug & Muir, Dirk & Elekdag, Selim & Lalonde, Rene, 2008. "Oil Price Movements and the Global Economy: A Model-Based Assessment," CEPR Discussion Papers 6700, C.E.P.R. Discussion Papers.
- Selim Elekdag & Rene Lalonde & Douglas Laxton & Dirk Muir & Paolo Pesenti, 2008. "Oil Price Movements and the Global Economy: A Model-Based Assessment," NBER Working Papers 13792, National Bureau of Economic Research, Inc.
- Bahattin Büyükşahin & Jeffrey H. Harris, 2011.
"Do Speculators Drive Crude Oil Futures Prices?,"
The Energy Journal, , vol. 32(2), pages 167-202, April.
- Bahattin Buyuksahin & Jeffrey H. Harris, 2011. "Do Speculators Drive Crude Oil Futures Prices?," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2), pages 167-202.
- Joe Roeber, 1994. "Oil Industry Structure and Evolving Markets," The Energy Journal, International Association for Energy Economics, vol. 0(Special I), pages 253-276.
- Mian Sajid Nazir & Hassan Younus & Ahmad Kaleem & Zeshan Anwar, 2014. "Impact of political events on stock market returns: empirical evidence from Pakistan," Journal of Economic and Administrative Sciences, Emerald Group Publishing Limited, vol. 30(1), pages 60-78, May.
- Wei, Yu & Wang, Yudong & Huang, Dengshi, 2010. "Forecasting crude oil market volatility: Further evidence using GARCH-class models," Energy Economics, Elsevier, vol. 32(6), pages 1477-1484, November.
- Gary Koop & Luca Onorante, 2019. "Macroeconomic Nowcasting Using Google Probabilities☆," Advances in Econometrics, in: Topics in Identification, Limited Dependent Variables, Partial Observability, Experimentation, and Flexible Modeling: Part A, volume 40, pages 17-40, Emerald Group Publishing Limited.
- Saeed Moshiri & Faezeh Foroutan, 2006.
"Forecasting Nonlinear Crude Oil Futures Prices,"
The Energy Journal, , vol. 27(4), pages 81-96, October.
- Saeed Moshiri & Faezeh Foroutan, 2006. "Forecasting Nonlinear Crude Oil Futures Prices," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4), pages 81-96.
- Fantazzini, Dean & Toktamysova, Zhamal, 2015.
"Forecasting German car sales using Google data and multivariate models,"
International Journal of Production Economics, Elsevier, vol. 170(PA), pages 97-135.
- Fantazzini, Dean & Toktamysova, Zhamal, 2015. "Forecasting German Car Sales Using Google Data and Multivariate Models," MPRA Paper 67110, University Library of Munich, Germany.
- Mohammadi, Hassan & Su, Lixian, 2010. "International evidence on crude oil price dynamics: Applications of ARIMA-GARCH models," Energy Economics, Elsevier, vol. 32(5), pages 1001-1008, September.
- Yiuman Tse & Grigori Erenburg, 2003. "Competition For Order Flow, Market Quality, And Price Discovery In The Nasdaq 100 Index Tracking Stock," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 26(3), pages 301-318, September.
- Avi Goldfarb & Shane M. Greenstein & Catherine E. Tucker, 2015. "Economic Analysis of the Digital Economy," NBER Books, National Bureau of Economic Research, Inc, number gree13-1.
- Steven L. Scott & Hal R. Varian, 2015.
"Bayesian Variable Selection for Nowcasting Economic Time Series,"
NBER Chapters, in: Economic Analysis of the Digital Economy, pages 119-135,
National Bureau of Economic Research, Inc.
- Steven L. Scott & Hal R. Varian, 2013. "Bayesian Variable Selection for Nowcasting Economic Time Series," NBER Working Papers 19567, National Bureau of Economic Research, Inc.
- Lynn Wu & Erik Brynjolfsson, 2015. "The Future of Prediction: How Google Searches Foreshadow Housing Prices and Sales," NBER Chapters, in: Economic Analysis of the Digital Economy, pages 89-118, National Bureau of Economic Research, Inc.
- Harvey,Andrew C., 1991.
"Forecasting, Structural Time Series Models and the Kalman Filter,"
Cambridge Books,
Cambridge University Press, number 9780521405737, September.
- Harvey,Andrew C., 1990. "Forecasting, Structural Time Series Models and the Kalman Filter," Cambridge Books, Cambridge University Press, number 9780521321969, September.
- Hyunyoung Choi & Hal Varian, 2012. "Predicting the Present with Google Trends," The Economic Record, The Economic Society of Australia, vol. 88(s1), pages 2-9, June.
- Granger, C W J, 1969. "Investigating Causal Relations by Econometric Models and Cross-Spectral Methods," Econometrica, Econometric Society, vol. 37(3), pages 424-438, July.
- Kaplan, Andreas M. & Haenlein, Michael, 2010. "Users of the world, unite! The challenges and opportunities of Social Media," Business Horizons, Elsevier, vol. 53(1), pages 59-68, January.
- Domenico Giannone & Lucrezia Reichlin & David Small, 2008. "Nowcasting: the real time informational content of macroeconomic data releases," ULB Institutional Repository 2013/6409, ULB -- Universite Libre de Bruxelles.
- Lutz Kilian, 2009.
"Not All Oil Price Shocks Are Alike: Disentangling Demand and Supply Shocks in the Crude Oil Market,"
American Economic Review, American Economic Association, vol. 99(3), pages 1053-1069, June.
- Kilian, Lutz, 2006. "Not All Oil Price Shocks Are Alike: Disentangling Demand and Supply Shocks in the Crude Oil Market," CEPR Discussion Papers 5994, C.E.P.R. Discussion Papers.
- Reichlin, Lucrezia & Giannone, Domenico & Small, David, 2005.
"Nowcasting GDP and Inflation: The Real Time Informational Content of Macroeconomic Data Releases,"
CEPR Discussion Papers
5178, C.E.P.R. Discussion Papers.
- Giannone, Domenico & Reichlin, Lucrezia & Small, David H., 2006. "Nowcasting GDP and inflation: the real-time informational content of macroeconomic data releases," Working Paper Series 633, European Central Bank.
- Domenico Giannone & Lucrezia Reichlin & David H. Small, 2005. "Nowcasting GDP and inflation: the real-time informational content of macroeconomic data releases," Finance and Economics Discussion Series 2005-42, Board of Governors of the Federal Reserve System (U.S.).
- Domenico Giannone & Lucrezia Reichlin & David H Small, 2007. "Nowcasting GDP and Inflation: The Real-Time Informational Content of Macroeconomic Data Releases," Money Macro and Finance (MMF) Research Group Conference 2006 164, Money Macro and Finance Research Group.
- Kaufmann, Robert K. & Ullman, Ben, 2009. "Oil prices, speculation, and fundamentals: Interpreting causal relations among spot and futures prices," Energy Economics, Elsevier, vol. 31(4), pages 550-558, July.
- Fan, Ying & Liang, Qiang & Wei, Yi-Ming, 2008. "A generalized pattern matching approach for multi-step prediction of crude oil price," Energy Economics, Elsevier, vol. 30(3), pages 889-904, May.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Tuhkuri, Joonas, 2016. "Forecasting Unemployment with Google Searches," ETLA Working Papers 35, The Research Institute of the Finnish Economy.
- Tuhkuri, Joonas, 2016. "ETLAnow: A Model for Forecasting with Big Data – Forecasting Unemployment with Google Searches in Europe," ETLA Reports 54, The Research Institute of the Finnish Economy.
- Lang, Korbinian & Auer, Benjamin R., 2020. "The economic and financial properties of crude oil: A review," The North American Journal of Economics and Finance, Elsevier, vol. 52(C).
- Laurent Ferrara & Anna Simoni, 2023.
"When are Google Data Useful to Nowcast GDP? An Approach via Preselection and Shrinkage,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 41(4), pages 1188-1202, October.
- Laurent Ferrara & Anna Simoni, 2019. "When are Google data useful to nowcast GDP? An approach via pre-selection and shrinkage," Working Papers 2019-04, Center for Research in Economics and Statistics.
- Laurent Ferrara & Anna Simoni, 2023. "When are Google Data Useful to Nowcast GDP? An Approach via Preselection and Shrinkage," Post-Print hal-03919944, HAL.
- Laurent Ferrara & Anna Simoni, 2020. "When are Google data useful to nowcast GDP? An approach via pre-selection and shrinkage," EconomiX Working Papers 2020-11, University of Paris Nanterre, EconomiX.
- Laurent Ferrara & Anna Simoni, 2019. "When are Google data useful to nowcast GDP? An approach via pre-selection and shrinkage," Working papers 717, Banque de France.
- Laurent Ferrara & Anna Simoni, 2020. "When are Google data useful to nowcast GDP? An approach via pre-selection and shrinkage," Papers 2007.00273, arXiv.org, revised Sep 2022.
- Laurent Ferrara & Anna Simoni, 2020. "When are Google data useful to nowcast GDP? An approach via pre-selection and shrinkage," Working Papers hal-04159714, HAL.
- David Coble & Pablo Pincheira, 2021. "Forecasting building permits with Google Trends," Empirical Economics, Springer, vol. 61(6), pages 3315-3345, December.
- Pérez, Fernando, 2018. "Nowcasting Peruvian GDP using Leading Indicators and Bayesian Variable Selection," Working Papers 2018-010, Banco Central de Reserva del Perú.
- Leif Anders Thorsrud, 2016.
"Nowcasting using news topics Big Data versus big bank,"
Working Papers
No 6/2016, Centre for Applied Macro- and Petroleum economics (CAMP), BI Norwegian Business School.
- Leif Anders Thorsrud, 2016. "Nowcasting using news topics. Big Data versus big bank," Working Paper 2016/20, Norges Bank.
- James Chapman & Ajit Desai, 2021. "Using Payments Data to Nowcast Macroeconomic Variables During the Onset of COVID-19," Staff Working Papers 21-2, Bank of Canada.
- Degiannakis, Stavros & Filis, George, 2017.
"Forecasting oil price realized volatility using information channels from other asset classes,"
Journal of International Money and Finance, Elsevier, vol. 76(C), pages 28-49.
- Degiannakis, Stavros & Filis, George, 2017. "Forecasting oil price realized volatility using information channels from other asset classes," MPRA Paper 96276, University Library of Munich, Germany.
- Coble, David & Pincheira, Pablo, 2017. "Nowcasting Building Permits with Google Trends," MPRA Paper 76514, University Library of Munich, Germany.
- Philip ME Garboden, 2019. "Sources and Types of Big Data for Macroeconomic Forecasting," Working Papers 2019-3, University of Hawaii Economic Research Organization, University of Hawaii at Manoa.
- James T. E. Chapman & Ajit Desai, 2023.
"Macroeconomic Predictions Using Payments Data and Machine Learning,"
Forecasting, MDPI, vol. 5(4), pages 1-32, November.
- James T. E. Chapman & Ajit Desai, 2022. "Macroeconomic Predictions using Payments Data and Machine Learning," Papers 2209.00948, arXiv.org.
- James Chapman & Ajit Desai, 2022. "Macroeconomic Predictions Using Payments Data and Machine Learning," Staff Working Papers 22-10, Bank of Canada.
- Qadan, Mahmoud & Nama, Hazar, 2018. "Investor sentiment and the price of oil," Energy Economics, Elsevier, vol. 69(C), pages 42-58.
- Benedikt Maas, 2020.
"Short‐term forecasting of the US unemployment rate,"
Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(3), pages 394-411, April.
- Maas, Benedikt, 2019. "Short-term forecasting of the US unemployment rate," MPRA Paper 94066, University Library of Munich, Germany.
- Jean-Charles Bricongne & Baptiste Meunier & Raquel Caldeira, 2024. "Should Central Banks Care About Text Mining? A Literature Review," Working papers 950, Banque de France.
- D'Ecclesia, Rita L. & Magrini, Emiliano & Montalbano, Pierluigi & Triulzi, Umberto, 2014. "Understanding recent oil price dynamics: A novel empirical approach," Energy Economics, Elsevier, vol. 46(S1), pages 11-17.
- Manel Hamdi & Chaker Aloui, 2015. "Forecasting Crude Oil Price Using Artificial Neural Networks: A Literature Survey," Economics Bulletin, AccessEcon, vol. 35(2), pages 1339-1359.
- Meng, Fanyi & Liu, Li, 2019. "Analyzing the economic sources of oil price volatility: An out-of-sample perspective," Energy, Elsevier, vol. 177(C), pages 476-486.
- Ferrari, Davide & Ravazzolo, Francesco & Vespignani, Joaquin, 2021.
"Forecasting energy commodity prices: A large global dataset sparse approach,"
Energy Economics, Elsevier, vol. 98(C).
- Davide Ferrari & Francesco Ravazzolo & Joaquin Vespignani, 2019. "Forecasting energy commodity prices: A large global dataset sparse approach," CAMA Working Papers 2019-90, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
- Davide Ferrari & Francesco Ravazzolo & Joaquin Vespignani, 2021. "Forecasting Energy Commodity Prices: A Large Global Dataset Sparse Approach," BEMPS - Bozen Economics & Management Paper Series BEMPS83, Faculty of Economics and Management at the Free University of Bozen.
- Ferrari, Davide & Ravazzolo, Francesco & Vespignani, Joaquin, 2019. "Forecasting energy commodity prices: a large global dataset sparse approach," Working Papers 2019-09, University of Tasmania, Tasmanian School of Business and Economics.
- Davide Ferrari & Francesco Ravazzolo & Joaquin Vespignani, 2019. "Forecasting Energy Commodity Prices: A Large Global Dataset Sparse Approach," Working Papers No 11/2019, Centre for Applied Macro- and Petroleum economics (CAMP), BI Norwegian Business School.
- Davide Ferrari & Francesco Ravazzolo & Joaquin L. Vespignani, 2019. "Forecasting Energy Commodity Prices: A Large Global Dataset Sparse Approach," Globalization Institute Working Papers 376, Federal Reserve Bank of Dallas.
- Matteo Barigozzi & Matteo Luciani, 2019.
"Quasi Maximum Likelihood Estimation and Inference of Large Approximate Dynamic Factor Models via the EM algorithm,"
Papers
1910.03821, arXiv.org, revised Sep 2024.
- Matteo Barigozzi & Matteo Luciani, 2024. "Quasi Maximum Likelihood Estimation and Inference of Large Approximate Dynamic Factor Models via the EM algorithm," Finance and Economics Discussion Series 2024-086, Board of Governors of the Federal Reserve System (U.S.).
More about this item
NEP fields
This paper has been announced in the following NEP Reports:- NEP-BIG-2021-05-24 (Big Data)
- NEP-ENE-2021-05-24 (Energy Economics)
- NEP-FOR-2021-05-24 (Forecasting)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2105.09154. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.