IDEAS home Printed from https://ideas.repec.org/a/spr/aodasc/v9y2022i2d10.1007_s40745-020-00278-w.html
   My bibliography  Save this article

Demand Prediction in the Automobile Industry Independent of Big Data

Author

Listed:
  • Takumi Kato

    (Saitama University)

Abstract

In recent years, various kinds of big data have been handled, and many variables are used in prediction model research. However, a gap between research and practice is thought to exist. As a result of adding variables that cannot be obtained at present as data representing the future to the explanatory variable, predicting the explanatory variable to apply it is necessary. There are cases wherein customers’ purchase intentions and attractiveness of products are used as explanatory variables; however, this is also not realistic because it is impossible to obtain product information from other companies before the products are launched. Therefore, to be useful for the production/sales plan, it is important that predictions are done using only currently available data, without additional surveys. In this study, gross domestic product and population are used as future data, models are built to predict the demand by body type in Japan on a monthly basis, up to 36 months ahead. Furthermore, in addition to earthquake and subsidy events, model change features were designed and incorporated into the models. The results showed that the prediction accuracy with an error of approximately 5%. It is believed that this study could suggest the possibility of feature quantity design and modeling instead of relying on large amounts of data.

Suggested Citation

  • Takumi Kato, 2022. "Demand Prediction in the Automobile Industry Independent of Big Data," Annals of Data Science, Springer, vol. 9(2), pages 249-270, April.
  • Handle: RePEc:spr:aodasc:v:9:y:2022:i:2:d:10.1007_s40745-020-00278-w
    DOI: 10.1007/s40745-020-00278-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s40745-020-00278-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s40745-020-00278-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Carpenter, Bob & Gelman, Andrew & Hoffman, Matthew D. & Lee, Daniel & Goodrich, Ben & Betancourt, Michael & Brubaker, Marcus & Guo, Jiqiang & Li, Peter & Riddell, Allen, 2017. "Stan: A Probabilistic Programming Language," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 76(i01).
    2. Armstrong, J. Scott & Morwitz, Vicki G. & Kumar, V., 2000. "Sales forecasts for existing consumer products and services: Do purchase intentions contribute to accuracy?," International Journal of Forecasting, Elsevier, vol. 16(3), pages 383-397.
    3. Fantazzini, Dean & Toktamysova, Zhamal, 2015. "Forecasting German car sales using Google data and multivariate models," International Journal of Production Economics, Elsevier, vol. 170(PA), pages 97-135.
    4. James Berkovec, 1985. "New Car Sales and Used Car Stocks: A Model of the Automobile Market," RAND Journal of Economics, The RAND Corporation, vol. 16(2), pages 195-214, Summer.
    5. Jan R. Landwehr & Aparna A. Labroo & Andreas Herrmann, 2011. "Gut Liking for the Ordinary: Incorporating Design Fluency Improves Automobile Sales Forecasts," Marketing Science, INFORMS, vol. 30(3), pages 416-429, 05-06.
    6. Scott Baker & Andrey Fradkin, 2011. "What Drives Job Search? Evidence from Google Search Data," Discussion Papers 10-020, Stanford Institute for Economic Policy Research.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sa-ngasoongsong, Akkarapol & Bukkapatnam, Satish T.S. & Kim, Jaebeom & Iyer, Parameshwaran S. & Suresh, R.P., 2012. "Multi-step sales forecasting in automotive industry based on structural relationship identification," International Journal of Production Economics, Elsevier, vol. 140(2), pages 875-887.
    2. Mioara, POPESCU, 2015. "Construction Of Economic Indicators Using Internet Searches," Annals of Spiru Haret University, Economic Series, Universitatea Spiru Haret, vol. 6(1), pages 25-31.
    3. George Doorn & Bryan Paton & Charles Spence, 2016. "Is J the new K? Initial letters and brand names," Journal of Brand Management, Palgrave Macmillan, vol. 23(6), pages 666-678, November.
    4. Francis,David C. & Kubinec ,Robert, 2022. "Beyond Political Connections : A Measurement Model Approach to Estimating Firm-levelPolitical Influence in 41 Economies," Policy Research Working Paper Series 10119, The World Bank.
    5. Martinovici, A., 2019. "Revealing attention - how eye movements predict brand choice and moment of choice," Other publications TiSEM 7dca38a5-9f78-4aee-bd81-c, Tilburg University, School of Economics and Management.
    6. Yongping Bao & Ludwig Danwitz & Fabian Dvorak & Sebastian Fehrler & Lars Hornuf & Hsuan Yu Lin & Bettina von Helversen, 2022. "Similarity and Consistency in Algorithm-Guided Exploration," CESifo Working Paper Series 10188, CESifo.
    7. Uddin, Gazi Salah & Tang, Ou & Sahamkhadam, Maziar & Taghizadeh-Hesary, Farhad & Yahya, Muhammad & Cerin, Pontus & Rehme, Jakob, 2021. "Analysis of Forecasting Models in an Electricity Market under Volatility," ADBI Working Papers 1212, Asian Development Bank Institute.
    8. Heinrich, Torsten & Yang, Jangho & Dai, Shuanping, 2020. "Growth, development, and structural change at the firm-level: The example of the PR China," MPRA Paper 105011, University Library of Munich, Germany.
    9. van Kesteren Erik-Jan & Bergkamp Tom, 2023. "Bayesian analysis of Formula One race results: disentangling driver skill and constructor advantage," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 19(4), pages 273-293, December.
    10. Xin Xu & Yang Lu & Yupeng Zhou & Zhiguo Fu & Yanjie Fu & Minghao Yin, 2021. "An Information-Explainable Random Walk Based Unsupervised Network Representation Learning Framework on Node Classification Tasks," Mathematics, MDPI, vol. 9(15), pages 1-14, July.
    11. Pizer, William A. & Burtraw, Dallas & Harrington, Winston & Newell, Richard G. & Sanchirico, James N., 2005. "Modeling Economywide versus Sectoral Climate Policies Using Combined Aggregate-Sectoral Models," Discussion Papers 10502, Resources for the Future.
    12. Xiaoyue Xi & Simon E. F. Spencer & Matthew Hall & M. Kate Grabowski & Joseph Kagaayi & Oliver Ratmann & Rakai Health Sciences Program and PANGEA‐HIV, 2022. "Inferring the sources of HIV infection in Africa from deep‐sequence data with semi‐parametric Bayesian Poisson flow models," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(3), pages 517-540, June.
    13. Kuschnig, Nikolas, 2021. "Bayesian Spatial Econometrics and the Need for Software," Department of Economics Working Paper Series 318, WU Vienna University of Economics and Business.
    14. Deniz Aksoy & David Carlson, 2022. "Electoral support and militants’ targeting strategies," Journal of Peace Research, Peace Research Institute Oslo, vol. 59(2), pages 229-241, March.
    15. Luo, Nanyu & Ji, Feng & Han, Yuting & He, Jinbo & Zhang, Xiaoya, 2024. "Fitting item response theory models using deep learning computational frameworks," OSF Preprints tjxab, Center for Open Science.
    16. Richard Hunt & Shelton Peiris & Neville Weber, 2022. "Estimation methods for stationary Gegenbauer processes," Statistical Papers, Springer, vol. 63(6), pages 1707-1741, December.
    17. Xin (Shane) Wang & Neil Bendle & Yinjie Pan, 2024. "Beyond text: Marketing strategy in a world turned upside down," Journal of the Academy of Marketing Science, Springer, vol. 52(4), pages 939-954, July.
    18. D. Fouskakis & G. Petrakos & I. Rotous, 2020. "A Bayesian longitudinal model for quantifying students’ preferences regarding teaching quality indicators," METRON, Springer;Sapienza Università di Roma, vol. 78(2), pages 255-270, August.
    19. Joseph B. Bak-Coleman & Ian Kennedy & Morgan Wack & Andrew Beers & Joseph S. Schafer & Emma S. Spiro & Kate Starbird & Jevin D. West, 2022. "Combining interventions to reduce the spread of viral misinformation," Nature Human Behaviour, Nature, vol. 6(10), pages 1372-1380, October.
    20. West, Sarah E., 2004. "Distributional effects of alternative vehicle pollution control policies," Journal of Public Economics, Elsevier, vol. 88(3-4), pages 735-757, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:aodasc:v:9:y:2022:i:2:d:10.1007_s40745-020-00278-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.