Google econometrics: nowcasting euro area car sales and big data quality requirements
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Graeme Chamberlin, 2010. "Googling the present," Economic & Labour Market Review, Palgrave Macmillan;Office for National Statistics, vol. 4(12), pages 59-95, December.
- D'Amuri, Francesco & Marcucci, Juri, 2009.
"‘Google it!’ Forecasting the US unemployment rate with a Google job search index,"
ISER Working Paper Series
2009-32, Institute for Social and Economic Research.
- Francesco D’Amuri & Juri Marcucci, 2010. "“Google it!”Forecasting the US Unemployment Rate with a Google Job Search index," Working Papers 2010.31, Fondazione Eni Enrico Mattei.
- D'Amuri, Francesco/FD & Marcucci, Juri/JM, 2009. ""Google it!" Forecasting the US unemployment rate with a Google job search index," MPRA Paper 18248, University Library of Munich, Germany.
- repec:ipg:wpaper:24 is not listed on IDEAS
- repec:ipg:wpaper:2013-024 is not listed on IDEAS
- Hyunyoung Choi & Hal Varian, 2012. "Predicting the Present with Google Trends," The Economic Record, The Economic Society of Australia, vol. 88(s1), pages 2-9, June.
- Diebold, Francis X & Mariano, Roberto S, 2002.
"Comparing Predictive Accuracy,"
Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
- Diebold, Francis X & Mariano, Roberto S, 1995. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(3), pages 253-263, July.
- Francis X. Diebold & Roberto S. Mariano, 1994. "Comparing Predictive Accuracy," NBER Technical Working Papers 0169, National Bureau of Economic Research, Inc.
- Tom Doan, "undated". "DMARIANO: RATS procedure to compute Diebold-Mariano Forecast Comparison Test," Statistical Software Components RTS00055, Boston College Department of Economics.
- Fantazzini, Dean & Toktamysova, Zhamal, 2015.
"Forecasting German car sales using Google data and multivariate models,"
International Journal of Production Economics, Elsevier, vol. 170(PA), pages 97-135.
- Fantazzini, Dean & Toktamysova, Zhamal, 2015. "Forecasting German Car Sales Using Google Data and Multivariate Models," MPRA Paper 67110, University Library of Munich, Germany.
- Nuno Barreira & Pedro Godinho & Paulo Melo, 2013. "Nowcasting unemployment rate and new car sales in south-western Europe with Google Trends," Netnomics, Springer, vol. 14(3), pages 129-165, November.
- Mohamed Arouri & Amal Aouadi & Philippe Foulquier & Frédéric Teulon, 2013. "Can Information Demand Help to Predict Stock Market Liquidity ? Google it !," Working Papers 2013-24, Department of Research, Ipag Business School.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Giulio Cornelli & Sebastian Doerr & Leonardo Gambacorta & Bruno Tissot, 2022.
"Big Data in Asian Central Banks,"
Asian Economic Policy Review, Japan Center for Economic Research, vol. 17(2), pages 255-269, July.
- Giulio Cornelli & Sebastian Doerr & Leonardo Gambacorta & Bruno Tissot, 2022. "Big data in Asian central banks," IFC Working Papers 21, Bank for International Settlements.
- Laurent Ferrara & Anna Simoni, 2023.
"When are Google Data Useful to Nowcast GDP? An Approach via Preselection and Shrinkage,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 41(4), pages 1188-1202, October.
- Laurent Ferrara & Anna Simoni, 2019. "When are Google data useful to nowcast GDP? An approach via pre-selection and shrinkage," Working papers 717, Banque de France.
- Laurent Ferrara & Anna Simoni, 2023. "When are Google Data Useful to Nowcast GDP? An Approach via Preselection and Shrinkage," Post-Print hal-03919944, HAL.
- Laurent Ferrara & Anna Simoni, 2019. "When are Google data useful to nowcast GDP? An approach via pre-selection and shrinkage," Working Papers 2019-04, Center for Research in Economics and Statistics.
- Laurent Ferrara & Anna Simoni, 2020. "When are Google data useful to nowcast GDP? An approach via pre-selection and shrinkage," Papers 2007.00273, arXiv.org, revised Sep 2022.
- Laurent Ferrara & Anna Simoni, 2020. "When are Google data useful to nowcast GDP? An approach via pre-selection and shrinkage," Working Papers hal-04159714, HAL.
- Laurent Ferrara & Anna Simoni, 2020. "When are Google data useful to nowcast GDP? An approach via pre-selection and shrinkage," EconomiX Working Papers 2020-11, University of Paris Nanterre, EconomiX.
- Alexander Jung & Patrick Kuehl, 2021.
"Can central bank communication help to stabilise inflation expectations?,"
Scottish Journal of Political Economy, Scottish Economic Society, vol. 68(3), pages 298-321, July.
- Jung, Alexander & Kühl, Patrick, 2021. "Can central bank communication help to stabilise inflation expectations?," Working Paper Series 2547, European Central Bank.
- Kakuho Furukawa & Ryohei Hisano, 2022. "A Nowcasting Model of Exports Using Maritime Big Data," Bank of Japan Working Paper Series 22-E-19, Bank of Japan.
- Cristea, R. G., 2020. "Can Alternative Data Improve the Accuracy of Dynamic Factor Model Nowcasts?," Cambridge Working Papers in Economics 20108, Faculty of Economics, University of Cambridge.
- Jung, Alexander, 2023. "Are monetary policy shocks causal to bank health? Evidence from the euro area," Journal of Macroeconomics, Elsevier, vol. 75(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Dimpfl, Thomas & Langen, Tobias, 2015. "A Cross-Country Analysis of Unemployment and Bonds with Long-Memory Relations," VfS Annual Conference 2015 (Muenster): Economic Development - Theory and Policy 112921, Verein für Socialpolitik / German Economic Association.
- Jichang Dong & Wei Dai & Ying Liu & Lean Yu & Jie Wang, 2019. "Forecasting Chinese Stock Market Prices using Baidu Search Index with a Learning-Based Data Collection Method," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 18(05), pages 1605-1629, September.
- Jacques Bughin, 2015. "Google searches and twitter mood: nowcasting telecom sales performance," Netnomics, Springer, vol. 16(1), pages 87-105, August.
- D’Amuri, Francesco & Marcucci, Juri, 2017.
"The predictive power of Google searches in forecasting US unemployment,"
International Journal of Forecasting, Elsevier, vol. 33(4), pages 801-816.
- Francesco D'Amuri & Juri Marcucci, 2012. "The predictive power of Google searches in forecasting unemployment," Temi di discussione (Economic working papers) 891, Bank of Italy, Economic Research and International Relations Area.
- David Iselin & Boriss Siliverstovs, 2013. "Mit Zeitungen Konjunkturprognosen erstellen: Eine Vergleichsstudie für die Schweiz und Deutschland," KOF Analysen, KOF Swiss Economic Institute, ETH Zurich, vol. 7(3), pages 104-117, September.
- Schaer, Oliver & Kourentzes, Nikolaos & Fildes, Robert, 2019. "Demand forecasting with user-generated online information," International Journal of Forecasting, Elsevier, vol. 35(1), pages 197-212.
- Alessia Naccarato & Andrea Pierini & Stefano Falorsi, 2015. "Using Google Trend Data To Predict The Italian Unemployment Rate," Departmental Working Papers of Economics - University 'Roma Tre' 0203, Department of Economics - University Roma Tre.
- Rodrigo Mulero & Alfredo García-Hiernaux, 2021. "Forecasting Spanish unemployment with Google Trends and dimension reduction techniques," SERIEs: Journal of the Spanish Economic Association, Springer;Spanish Economic Association, vol. 12(3), pages 329-349, September.
- Krzysztof DRACHAL, 2020. "Forecasting the Inflation Rate in Poland and U.S. Using Dynamic Model Averaging (DMA) and Google Queries," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(2), pages 18-34, July.
- Rodrigo Mulero & Alfredo Garcia-Hiernaux, 2023. "Forecasting unemployment with Google Trends: age, gender and digital divide," Empirical Economics, Springer, vol. 65(2), pages 587-605, August.
- Bangwayo-Skeete, Prosper F. & Skeete, Ryan W., 2015. "Can Google data improve the forecasting performance of tourist arrivals? Mixed-data sampling approach," Tourism Management, Elsevier, vol. 46(C), pages 454-464.
- David Iselin & Boriss Siliverstovs, 2013. "Using Newspapers for Tracking the Business Cycle," KOF Working papers 13-337, KOF Swiss Economic Institute, ETH Zurich.
- Thomas Dimpfl & Tobias Langen, 2019. "How Unemployment Affects Bond Prices: A Mixed Frequency Google Nowcasting Approach," Computational Economics, Springer;Society for Computational Economics, vol. 54(2), pages 551-573, August.
- Naccarato, Alessia & Falorsi, Stefano & Loriga, Silvia & Pierini, Andrea, 2018. "Combining official and Google Trends data to forecast the Italian youth unemployment rate," Technological Forecasting and Social Change, Elsevier, vol. 130(C), pages 114-122.
- van der Wielen, Wouter & Barrios, Salvador, 2021.
"Economic sentiment during the COVID pandemic: Evidence from search behaviour in the EU,"
Journal of Economics and Business, Elsevier, vol. 115(C).
- VAN DER WIELEN Wouter & BARRIOS Salvador, 2020. "Fear and Employment During the COVID Pandemic: Evidence from Search Behaviour in the EU," JRC Working Papers on Taxation & Structural Reforms 2020-08, Joint Research Centre.
- Jaroslav Pavlicek & Ladislav Kristoufek, 2014. "Can Google searches help nowcast and forecast unemployment rates in the Visegrad Group countries?," Papers 1408.6639, arXiv.org.
- Chien-jung Ting & Yi-Long Hsiao, 2022. "Nowcasting the GDP in Taiwan and the Real-Time Tourism Data," Advances in Management and Applied Economics, SCIENPRESS Ltd, vol. 12(3), pages 1-2.
- Götz, Thomas B. & Knetsch, Thomas A., 2019.
"Google data in bridge equation models for German GDP,"
International Journal of Forecasting, Elsevier, vol. 35(1), pages 45-66.
- Götz, Thomas B. & Knetsch, Thomas A., 2017. "Google data in bridge equation models for German GDP," Discussion Papers 18/2017, Deutsche Bundesbank.
- Fondeur, Y. & Karamé, F., 2013.
"Can Google data help predict French youth unemployment?,"
Economic Modelling, Elsevier, vol. 30(C), pages 117-125.
- Frédéric Karamé & Yannick Fondeur, 2012. "Can Google Data Help Predict French Youth Unemployment?," Documents de recherche 12-03, Centre d'Études des Politiques Économiques (EPEE), Université d'Evry Val d'Essonne.
- Y. Fondeur & F. Karamé, 2013. "Can Google data help predict French youth unemployment?," Post-Print hal-02297071, HAL.
- Caperna, Giulio & Colagrossi, Marco & Geraci, Andrea & Mazzarella, Gianluca, 2022. "A babel of web-searches: Googling unemployment during the pandemic," Labour Economics, Elsevier, vol. 74(C).
More about this item
Keywords
big data; google internet search; modelling; nowcasting; quality; statistics; vector auto regression;All these keywords.
JEL classification:
- C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
- C82 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs - - - Methodology for Collecting, Estimating, and Organizing Macroeconomic Data; Data Access
- E58 - Macroeconomics and Monetary Economics - - Monetary Policy, Central Banking, and the Supply of Money and Credit - - - Central Banks and Their Policies
- E71 - Macroeconomics and Monetary Economics - - Macro-Based Behavioral Economics - - - Role and Effects of Psychological, Emotional, Social, and Cognitive Factors on the Macro Economy
NEP fields
This paper has been announced in the following NEP Reports:- NEP-BIG-2018-12-17 (Big Data)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ecb:ecbsps:201830. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Official Publications (email available below). General contact details of provider: https://edirc.repec.org/data/emieude.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.