My bibliography
Save this item
Carbon price forecasting with complex network and extreme learning machine
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Liu, Jinpei & Zhao, Xiaoman & Luo, Rui & Tao, Zhifu, 2024. "A novel link prediction model for interval-valued crude oil prices based on complex network and multi-source information," Applied Energy, Elsevier, vol. 376(PB).
- Tianqi Pang & Kehui Tan & Chenyou Fan, 2023. "Carbon Price Forecasting with Quantile Regression and Feature Selection," Papers 2305.03224, arXiv.org.
- Sha Liu & Yiting Zhang & Junping Wang & Danlei Feng, 2024. "Fluctuations and Forecasting of Carbon Price Based on A Hybrid Ensemble Learning GARCH-LSTM-Based Approach: A Case of Five Carbon Trading Markets in China," Sustainability, MDPI, vol. 16(4), pages 1-23, February.
- Huang, Wenyang & Zhao, Jianyu & Wang, Xiaokang, 2024. "Model-driven multimodal LSTM-CNN for unbiased structural forecasting of European Union allowances open-high-low-close price," Energy Economics, Elsevier, vol. 132(C).
- Zhou, Yang & Xie, Chi & Wang, Gang-Jin & Zhu, You & Uddin, Gazi Salah, 2023. "Analysing and forecasting co-movement between innovative and traditional financial assets based on complex network and machine learning," Research in International Business and Finance, Elsevier, vol. 64(C).
- Jujie Wang & Zhenzhen Zhuang, 2023. "A novel cluster based multi-index nonlinear ensemble framework for carbon price forecasting," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(7), pages 6225-6247, July.
- Zhang, Fang & Xia, Yan, 2022. "Carbon price prediction models based on online news information analytics," Finance Research Letters, Elsevier, vol. 46(PA).
- AL-Alimi, Dalal & AlRassas, Ayman Mutahar & Al-qaness, Mohammed A.A. & Cai, Zhihua & Aseeri, Ahmad O. & Abd Elaziz, Mohamed & Ewees, Ahmed A., 2023. "TLIA: Time-series forecasting model using long short-term memory integrated with artificial neural networks for volatile energy markets," Applied Energy, Elsevier, vol. 343(C).
- Xu, Yuhong & Zhao, Xinyao, 2024. "How does node centrality in a financial network affect asset price prediction?," The North American Journal of Economics and Finance, Elsevier, vol. 73(C).
- Qi, Shaozhou & Cheng, Shihan & Tan, Xiujie & Feng, Shenghao & Zhou, Qi, 2022. "Predicting China's carbon price based on a multi-scale integrated model," Applied Energy, Elsevier, vol. 324(C).
- Ma, Changxi & Zhao, Mingxi & Huang, Xiaoting & Zhao, Yongpeng, 2024. "Optimized deep extreme learning machine for traffic prediction and autonomous vehicle lane change decision-making," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 633(C).
- Huang, Wenyang & Wang, Huiwen & Wei, Yigang, 2023. "Identifying the determinants of European carbon allowances prices: A novel robust partial least squares method for open-high-low-close data," International Review of Financial Analysis, Elsevier, vol. 90(C).
- Li, Guohui & Ning, Zhiyuan & Yang, Hong & Gao, Lipeng, 2022. "A new carbon price prediction model," Energy, Elsevier, vol. 239(PD).
- Sun Meng & Yan Chen, 2023. "Market Volatility Spillover, Network Diffusion, and Financial Systemic Risk Management: Financial Modeling and Empirical Study," Mathematics, MDPI, vol. 11(6), pages 1-16, March.
- Gao, Feng & Chi, Hong & Shao, Xueyan, 2021. "Forecasting residential electricity consumption using a hybrid machine learning model with online search data," Applied Energy, Elsevier, vol. 300(C).
- Dinggao Liu & Liuqing Wang & Shuo Lin & Zhenpeng Tang, 2025. "A Novel Multi-Task Learning Framework for Interval-Valued Carbon Price Forecasting Using Online News and Search Engine Data," Mathematics, MDPI, vol. 13(3), pages 1-23, January.
- Zhu, Mengrui & Xu, Hua & Wang, Minggang & Tian, Lixin, 2024. "Carbon price interval prediction method based on probability density recurrence network and interval multi-layer perceptron," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 636(C).
- Huang, Yumeng & Dai, Xingyu & Wang, Qunwei & Zhou, Dequn, 2021. "A hybrid model for carbon price forecastingusing GARCH and long short-term memory network," Applied Energy, Elsevier, vol. 285(C).
- Nader Trabelsi & Aviral Kumar Tiwari, 2023. "CO2 Emission Allowances Risk Prediction with GAS and GARCH Models," Computational Economics, Springer;Society for Computational Economics, vol. 61(2), pages 775-805, February.
- Zhou, Feite & Huang, Zhehao & Zhang, Changhong, 2022. "Carbon price forecasting based on CEEMDAN and LSTM," Applied Energy, Elsevier, vol. 311(C).
- Xiangjun Cai & Dagang Li & Li Feng, 2024. "Enhanced Carbon Price Forecasting Using Extended Sliding Window Decomposition with LSTM and SVR," Mathematics, MDPI, vol. 12(23), pages 1-20, November.
- Jesús Molina‐Muñoz & Andrés Mora‐Valencia & Javier Perote, 2024. "Predicting carbon and oil price returns using hybrid models based on machine and deep learning," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 31(2), June.
- Tan, Xueping & Sirichand, Kavita & Vivian, Andrew & Wang, Xinyu, 2022. "Forecasting European carbon returns using dimension reduction techniques: Commodity versus financial fundamentals," International Journal of Forecasting, Elsevier, vol. 38(3), pages 944-969.
- Wen Zhang & Zhibin Wu, 2022. "Optimal hybrid framework for carbon price forecasting using time series analysis and least squares support vector machine," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(3), pages 615-632, April.
- Zhang, Wen & Wu, Zhibin & Zeng, Xiaojun & Zhu, Changhui, 2023. "An ensemble dynamic self-learning model for multiscale carbon price forecasting," Energy, Elsevier, vol. 263(PC).
- Wang, Minggang & Zhu, Mengrui & Tian, Lixin, 2022. "A novel framework for carbon price forecasting with uncertainties," Energy Economics, Elsevier, vol. 112(C).