IDEAS home Printed from https://ideas.repec.org/r/eee/phsmap/v348y2005icp404-418.html
   My bibliography  Save this item

A comment on measuring the Hurst exponent of financial time series

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Ladislav Kristoufek & Miloslav Vosvrda, 2014. "Measuring capital market efficiency: long-term memory, fractal dimension and approximate entropy," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 87(7), pages 1-9, July.
  2. He, Ling-Yun & Qian, Wen-Bin, 2012. "A Monte Carlo simulation to the performance of the R/S and V/S methods—Statistical revisit and real world application," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(14), pages 3770-3782.
  3. Barunik, Jozef & Kristoufek, Ladislav, 2010. "On Hurst exponent estimation under heavy-tailed distributions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(18), pages 3844-3855.
  4. Zbigniew Kurylek, 2020. "ICO Tokens as an Alternative Financial Instrument: A Risk Measurement," European Research Studies Journal, European Research Studies Journal, vol. 0(4), pages 512-530.
  5. Luca Di Persio & Tamirat Temesgen Dufera, 2024. "Deep Neural Network Model for Hurst Exponent: Learning from R/S Analysis," Mathematics, MDPI, vol. 12(22), pages 1-26, November.
  6. Jin, Xiaoye, 2016. "The impact of 2008 financial crisis on the efficiency and contagion of Asian stock markets: A Hurst exponent approach," Finance Research Letters, Elsevier, vol. 17(C), pages 167-175.
  7. Marin-Lopez, A. & Martínez-Cadena, J.A. & Martinez-Martinez, F. & Alvarez-Ramirez, J., 2023. "Surrogate multivariate Hurst exponent analysis of gait dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
  8. Tamilalagan, P. & Balasubramaniam, P., 2017. "Moment stability via resolvent operators of fractional stochastic differential inclusions driven by fractional Brownian motion," Applied Mathematics and Computation, Elsevier, vol. 305(C), pages 299-307.
  9. Kristoufek, Ladislav, 2014. "Leverage effect in energy futures," Energy Economics, Elsevier, vol. 45(C), pages 1-9.
  10. Mynhardt, H. R. & Plastun, Alex & Makarenko, Inna, 2014. "Behavior of Financial Markets Efficiency During the Financial Market Crisis: 2007-2009," MPRA Paper 58942, University Library of Munich, Germany.
  11. Paulo Vitor Souza de Souza & C sar Augusto Tib rcio Silva, 2020. "Effects of COVID-19 Pandemic on International Capital Markets," International Journal of Economics and Financial Issues, Econjournals, vol. 10(6), pages 163-171.
  12. Shalini, Velappan & Prasanna, Krishna, 2016. "Impact of the financial crisis on Indian commodity markets: Structural breaks and volatility dynamics," Energy Economics, Elsevier, vol. 53(C), pages 40-57.
  13. Jin, Xiaoye, 2017. "Time-varying return-volatility relation in international stock markets," International Review of Economics & Finance, Elsevier, vol. 51(C), pages 157-173.
  14. Vogl, Markus, 2022. "Controversy in financial chaos research and nonlinear dynamics: A short literature review," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
  15. Liu, Jian & Cheng, Cheng & Yang, Xianglin & Yan, Lizhao & Lai, Yongzeng, 2019. "Analysis of the efficiency of Hong Kong REITs market based on Hurst exponent," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 534(C).
  16. Sergio Da Silva & Annibal Figueiredo & Iram Gleria & Raul Matsushita, 2007. "Hurst exponents, power laws, and efficiency in the Brazilian foreign exchange market," Economics Bulletin, AccessEcon, vol. 7(1), pages 1-11.
  17. Kristoufek, Ladislav, 2009. "R/S analysis and DFA: finite sample properties and confidence intervals," MPRA Paper 16446, University Library of Munich, Germany.
  18. Martin Dlask & Jaromir Kukal & Oldrich Vysata, 2017. "Bayesian Approach to Hurst Exponent Estimation," Methodology and Computing in Applied Probability, Springer, vol. 19(3), pages 973-983, September.
  19. Guglielmo Maria Caporale & Luis A. Gil-Alana & Alex Plastun, 2017. "Long Memory and Data Frequency in Financial Markets," Discussion Papers of DIW Berlin 1647, DIW Berlin, German Institute for Economic Research.
  20. Jiang, Zhi-Qiang & Xie, Wen-Jie & Zhou, Wei-Xing, 2014. "Testing the weak-form efficiency of the WTI crude oil futures market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 405(C), pages 235-244.
  21. Zilong Zhang & Bing Xue & Jiaxing Pang & Xingpeng Chen, 2016. "The Decoupling of Resource Consumption and Environmental Impact from Economic Growth in China: Spatial Pattern and Temporal Trend," Sustainability, MDPI, vol. 8(3), pages 1-13, February.
  22. Juan Benjamín Duarte Duarte & Juan Manuel Mascareñas Pérez-Iñigo, 2014. "¿Han sido los mercados bursátiles eficientes informacionalmente?," Apuntes del Cenes, Universidad Pedagógica y Tecnológica de Colombia, June.
  23. Alessandro Stringhi & Silvia Figini, 2016. "How to improve accuracy for DFA technique," Papers 1602.00629, arXiv.org.
  24. Vogl, Markus, 2023. "Hurst exponent dynamics of S&P 500 returns: Implications for market efficiency, long memory, multifractality and financial crises predictability by application of a nonlinear dynamics analysis framewo," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
  25. Anagnostidis, P. & Varsakelis, C. & Emmanouilides, C.J., 2016. "Has the 2008 financial crisis affected stock market efficiency? The case of Eurozone," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 447(C), pages 116-128.
  26. Zunino, Luciano & Bariviera, Aurelio F. & Guercio, M. Belén & Martinez, Lisana B. & Rosso, Osvaldo A., 2016. "Monitoring the informational efficiency of European corporate bond markets with dynamical permutation min-entropy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 456(C), pages 1-9.
  27. Ramos-Requena, J.P. & Trinidad-Segovia, J.E. & Sánchez-Granero, M.A., 2017. "Introducing Hurst exponent in pair trading," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 488(C), pages 39-45.
  28. Kristoufek, Ladislav, 2009. "Procesy s dlouhou pamětí a jejich vývoj ve výnosech indexu PX v letech 1999 – 2009 [Long-term memory and its evolution in returns of PX between 1999 and 2009]," MPRA Paper 16435, University Library of Munich, Germany.
  29. Mishra, Ritesh Kumar & Sehgal, Sanjay & Bhanumurthy, N.R., 2011. "A search for long-range dependence and chaotic structure in Indian stock market," Review of Financial Economics, Elsevier, vol. 20(2), pages 96-104, May.
  30. Kristoufek, Ladislav, 2012. "How are rescaled range analyses affected by different memory and distributional properties? A Monte Carlo study," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(17), pages 4252-4260.
  31. López-García, M.N. & Trinidad-Segovia, J.E. & Sánchez-Granero, M.A. & Pouchkarev, I., 2021. "Extending the Fama and French model with a long term memory factor," European Journal of Operational Research, Elsevier, vol. 291(2), pages 421-426.
  32. Schadner, Wolfgang, 2022. "U.S. Politics from a multifractal perspective," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
  33. Li, Daye & Nishimura, Yusaku & Men, Ming, 2016. "The long memory and the transaction cost in financial markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 442(C), pages 312-320.
  34. Kristoufek, Ladislav, 2009. "Distinguishing between short and long range dependence: Finite sample properties of rescaled range and modified rescaled range," MPRA Paper 16424, University Library of Munich, Germany.
  35. Li, Daye & Nishimura, Yusaku & Men, Ming, 2016. "Why the long-term auto-correlation has not been eliminated by arbitragers: Evidences from NYMEX," Energy Economics, Elsevier, vol. 59(C), pages 167-178.
  36. Martin Eling, 2009. "Does Hedge Fund Performance Persist? Overview and New Empirical Evidence," European Financial Management, European Financial Management Association, vol. 15(2), pages 362-401, March.
  37. Juan Benjamín Duarte Duarte & Juan Manuel Mascare?nas Pérez-Iñigo, 2014. "Comprobación de la eficiencia débil en los principales mercados financieros latinoamericanos," Estudios Gerenciales, Universidad Icesi, November.
  38. Ma, Pengcheng & Li, Daye & Li, Shuo, 2016. "Efficiency and cross-correlation in equity market during global financial crisis: Evidence from China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 444(C), pages 163-176.
  39. Chaker Aloui & Duc Khuong Nguyen, 2014. "On the detection of extreme movements and persistent behaviour in Mediterranean stock markets: a wavelet-based approach," Applied Economics, Taylor & Francis Journals, vol. 46(22), pages 2611-2622, August.
  40. Yuhang Wang & Muyi Kang & Mingfei Zhao & Kaixiong Xing & Guoyi Wang & Feng Xue, 2017. "The Spatiotemporal Variation of Tree Cover in the Loess Plateau of China after the ‘Grain for Green’ Project," Sustainability, MDPI, vol. 9(5), pages 1-15, May.
  41. Esther Cabezas-Rivas & Felipe S'anchez-Coll & Isaac Tormo-Xaixo, 2023. "Chance or Chaos? Fractal geometry aimed to inspect the nature of Bitcoin," Papers 2309.00390, arXiv.org.
  42. Paulo Vitor Souza de SOUZA & César Augusto Tibúrcio SILVA, 2021. "Economic policy uncertainty and adaptability in international capital markets," Theoretical and Applied Economics, Asociatia Generala a Economistilor din Romania / Editura Economica, vol. 0(1(626), S), pages 85-100, Spring.
  43. Kristoufek, Ladislav, 2019. "Are the crude oil markets really becoming more efficient over time? Some new evidence," Energy Economics, Elsevier, vol. 82(C), pages 253-263.
  44. repec:ebl:ecbull:v:7:y:2007:i:1:p:1-11 is not listed on IDEAS
  45. Ladislav Krištoufek, 2010. "Dlouhá paměť a její vývoj ve výnosech burzovního indexu PX v letech 1997-2009 [Long-Term Memory and Its Evolution in Returns of Stock Index PX Between 1997 and 2009]," Politická ekonomie, Prague University of Economics and Business, vol. 2010(4), pages 471-487.
  46. Avci-Surucu, Ezgi & Aydogan, A. Kursat & Akgul, Doganbey, 2016. "Bidding structure, market efficiency and persistence in a multi-time tariff setting," Energy Economics, Elsevier, vol. 54(C), pages 77-87.
  47. Sánchez Granero, M.A. & Trinidad Segovia, J.E. & García Pérez, J., 2008. "Some comments on Hurst exponent and the long memory processes on capital markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(22), pages 5543-5551.
  48. Li, Daye & Kou, Zhun & Sun, Qiankun, 2015. "The scale-dependent market trend: Empirical evidences using the lagged DFA method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 433(C), pages 26-35.
  49. Ibarra-Valdez, C. & Alvarez, J. & Alvarez-Ramirez, J., 2016. "Randomness confidence bands of fractal scaling exponents for financial price returns," Chaos, Solitons & Fractals, Elsevier, vol. 83(C), pages 119-124.
  50. Ladislav Kristoufek, 2013. "Testing power-law cross-correlations: Rescaled covariance test," Papers 1307.4727, arXiv.org, revised Aug 2013.
  51. Meraz, M. & Alvarez-Ramirez, J. & Rodriguez, E., 2022. "Multivariate rescaled range analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 589(C).
  52. Bassler, Kevin E. & McCauley, Joseph L. & Gunaratne, Gemunu H., 2006. "Nonstationary increments, scaling distributions, and variable diffusion processes in financial markets," MPRA Paper 2126, University Library of Munich, Germany.
  53. A. Gómez-Águila & J. E. Trinidad-Segovia & M. A. Sánchez-Granero, 2022. "Improvement in Hurst exponent estimation and its application to financial markets," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-21, December.
  54. Wegener, Christian & von Nitzsch, Rüdiger & Cengiz, Cetin, 2010. "An advanced perspective on the predictability in hedge fund returns," Journal of Banking & Finance, Elsevier, vol. 34(11), pages 2694-2708, November.
  55. Trinidad Segovia, J.E. & Fernández-Martínez, M. & Sánchez-Granero, M.A., 2019. "A novel approach to detect volatility clusters in financial time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
  56. Anagnostidis, Panagiotis & Emmanouilides, Christos J., 2015. "Nonlinearity in high-frequency stock returns: Evidence from the Athens Stock Exchange," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 421(C), pages 473-487.
  57. Matsushita, Raul & Gleria, Iram & Figueiredo, Annibal & Da Silva, Sergio, 2007. "Are Pound and Euro the Same Currency? - Updated," MPRA Paper 1981, University Library of Munich, Germany.
  58. Abounoori, Esmaiel & Shahrazi, Mahdi & Rasekhi, Saeed, 2012. "An investigation of Forex market efficiency based on detrended fluctuation analysis: A case study for Iran," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(11), pages 3170-3179.
  59. Auer, Benjamin R. & Hoffmann, Andreas, 2016. "Do carry trade returns show signs of long memory?," The Quarterly Review of Economics and Finance, Elsevier, vol. 61(C), pages 201-208.
  60. Karahan, Cenk C. & Odabaşı, Attila & Tiryaki, C. Sani, 2024. "Wired together: Integration and efficiency in European electricity markets," Energy Economics, Elsevier, vol. 133(C).
  61. Mahata, Ajit & Bal, Debi Prasad & Nurujjaman, Md, 2020. "Identification of short-term and long-term time scales in stock markets and effect of structural break," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.