IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v8y2016i3p222-d64736.html
   My bibliography  Save this article

The Decoupling of Resource Consumption and Environmental Impact from Economic Growth in China: Spatial Pattern and Temporal Trend

Author

Listed:
  • Zilong Zhang

    (Key Laboratory of Western China’s Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
    Institute for Circular Economy in Western China, Lanzhou University, Lanzhou 730000, China)

  • Bing Xue

    (Key Lab of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
    Institute for Advanced Sustainability Studies (IASS), Potsdam 14467, Germany)

  • Jiaxing Pang

    (Key Laboratory of Western China’s Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
    Institute for Circular Economy in Western China, Lanzhou University, Lanzhou 730000, China)

  • Xingpeng Chen

    (Key Laboratory of Western China’s Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
    Institute for Circular Economy in Western China, Lanzhou University, Lanzhou 730000, China)

Abstract

Unprecedented economic achievement in China has occurred along with rising resource consumption and waste productions levels. The goal of sustainability requires the decoupling of economic growth from resource consumption (resource decoupling) and environmental degradation (impact decoupling). For this paper, the performances of resource decoupling (energy and water) and impact decoupling (wastewater, SO 2 and CO 2 ) in China were evaluated, and the spatial pattern and temporal trend of decoupling performance were investigated by using the rescaled range analysis (R/S). The results indicate the following. (1) The performance of resource decoupling during the investigated period is worse than that of traditional impact (SO 2 and wastewater) decoupling, but better than that of the CO 2 emission. Additionally, the decoupling performances of energy consumption and related pollutant emission (except CO 2 ) are better than that of water usage and wastewater discharge; (2) The decoupling performance of energy consumption, SO 2 and CO 2 , has substantially improved from the 10th Five-Year Planning Period (FYP) (2001–2005) to the 11th FYP (2006–2010), which indicates that the decoupling performance is highly related the environmental policy; (3) The spatial disparities of the performance of resource and impact decoupling are declining, which indicates the existence of cross-province convergence in decoupling performance; (4) The decoupling performance of SO 2 and water usage in most of regions shows an improving trend. Inversely, the decoupling performance of energy consumption, CO 2 emission, and wastewater discharge in most regions show a decreasing trend; (5) China needs more stringent water-saving targets and wastewater discharge standards; better policy efforts to improve the water recycling level both in agricultural, industrial and municipal level are required to prevent the decreasing trend of the decoupling performance.

Suggested Citation

  • Zilong Zhang & Bing Xue & Jiaxing Pang & Xingpeng Chen, 2016. "The Decoupling of Resource Consumption and Environmental Impact from Economic Growth in China: Spatial Pattern and Temporal Trend," Sustainability, MDPI, vol. 8(3), pages 1-13, February.
  • Handle: RePEc:gam:jsusta:v:8:y:2016:i:3:p:222-:d:64736
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/8/3/222/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/8/3/222/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tapio, Petri, 2005. "Towards a theory of decoupling: degrees of decoupling in the EU and the case of road traffic in Finland between 1970 and 2001," Transport Policy, Elsevier, vol. 12(2), pages 137-151, March.
    2. Diakoulaki, D. & Mandaraka, M., 2007. "Decomposition analysis for assessing the progress in decoupling industrial growth from CO2 emissions in the EU manufacturing sector," Energy Economics, Elsevier, vol. 29(4), pages 636-664, July.
    3. Julia K Steinberger & Fridolin Krausmann & Michael Getzner & Heinz Schandl & Jim West, 2013. "Development and Dematerialization: An International Study," PLOS ONE, Public Library of Science, vol. 8(10), pages 1-11, October.
    4. Heming Wang & Seiji Hashimoto & Qiang Yue & Yuichi Moriguchi & Zhongwu Lu, 2013. "Decoupling Analysis of Four Selected Countries," Journal of Industrial Ecology, Yale University, vol. 17(4), pages 618-629, August.
    5. Ichinose, Daisuke & Yamamoto, Masashi & Yoshida, Yuichiro, 2015. "The decoupling of and affluence discharge under spatial correlation: do richer communities discharge more waste? – CORRIGENDUM," Environment and Development Economics, Cambridge University Press, vol. 20(2), pages 282-282, April.
    6. Ichinose, Daisuke & Yamamoto, Masashi & Yoshida, Yuichiro, 2015. "The decoupling of affluence and waste discharge under spatial correlation: Do richer communities discharge more waste?," Environment and Development Economics, Cambridge University Press, vol. 20(2), pages 161-184, April.
    7. Zhang, Zhongxiang, 2000. "Decoupling China's Carbon Emissions Increase from Economic Growth: An Economic Analysis and Policy Implications," World Development, Elsevier, vol. 28(4), pages 739-752, April.
    8. Li, Danny H.W. & Yang, Liu & Lam, Joseph C., 2013. "Zero energy buildings and sustainable development implications – A review," Energy, Elsevier, vol. 54(C), pages 1-10.
    9. Kuan-Min Wang, 2013. "The relationship between carbon dioxide emissions and economic growth: quantile panel-type analysis," Quality & Quantity: International Journal of Methodology, Springer, vol. 47(3), pages 1337-1366, April.
    10. Sánchez Granero, M.A. & Trinidad Segovia, J.E. & García Pérez, J., 2008. "Some comments on Hurst exponent and the long memory processes on capital markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(22), pages 5543-5551.
    11. Gene M. Grossman & Alan B. Krueger, 1995. "Economic Growth and the Environment," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 110(2), pages 353-377.
    12. Andreoni, V. & Galmarini, S., 2012. "Decoupling economic growth from carbon dioxide emissions: A decomposition analysis of Italian energy consumption," Energy, Elsevier, vol. 44(1), pages 682-691.
    13. Giovanni Marin & Massimiliano Mazzanti, 2013. "The evolution of environmental and labor productivity dynamics," Journal of Evolutionary Economics, Springer, vol. 23(2), pages 357-399, April.
    14. Andersson, Fredrik N.G. & Karpestam, Peter, 2013. "CO2 emissions and economic activity: Short- and long-run economic determinants of scale, energy intensity and carbon intensity," Energy Policy, Elsevier, vol. 61(C), pages 1285-1294.
    15. de Freitas, Luciano Charlita & Kaneko, Shinji, 2011. "Decomposing the decoupling of CO2 emissions and economic growth in Brazil," Ecological Economics, Elsevier, vol. 70(8), pages 1459-1469, June.
    16. Brizga, Janis & Feng, Kuishuang & Hubacek, Klaus, 2013. "Drivers of CO2 emissions in the former Soviet Union: A country level IPAT analysis from 1990 to 2010," Energy, Elsevier, vol. 59(C), pages 743-753.
    17. Bithas, K. & Kalimeris, P., 2013. "Re-estimating the decoupling effect: Is there an actual transition towards a less energy-intensive economy?," Energy, Elsevier, vol. 51(C), pages 78-84.
    18. Xingpeng Chen & Jiaxing Pang & Zilong Zhang & Hengji Li, 2014. "Sustainability Assessment of Solid Waste Management in China: A Decoupling and Decomposition Analysis," Sustainability, MDPI, vol. 6(12), pages 1-14, December.
    19. Deng, Weibing & Li, Wei & Cai, Xu & Wang, Qiuping A., 2011. "Self-similarity and network perspective of the Chinese fund market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(21), pages 3826-3834.
    20. Zhang, Na & Lior, Noam & Jin, Hongguang, 2011. "The energy situation and its sustainable development strategy in China," Energy, Elsevier, vol. 36(6), pages 3639-3649.
    21. Couillard, Michel & Davison, Matt, 2005. "A comment on measuring the Hurst exponent of financial time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 348(C), pages 404-418.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Haibo & Di Maria, Corrado & Ghezelayagh, Bahar & Shan, Yuli, 2024. "Climate policy in emerging economies: Evidence from China’s Low-Carbon City Pilot," Journal of Environmental Economics and Management, Elsevier, vol. 124(C).
    2. Doreen Fedrigo-Fazio & Jean-Pierre Schweitzer & Patrick Ten Brink & Leonardo Mazza & Alison Ratliff & Emma Watkins, 2016. "Evidence of Absolute Decoupling from Real World Policy Mixes in Europe," Sustainability, MDPI, vol. 8(6), pages 1-22, May.
    3. Xu, Li-jun & Fan, Xiao-chao & Wang, Wei-qing & Xu, Lei & Duan, You-lian & Shi, Rui-jing, 2017. "Renewable and sustainable energy of Xinjiang and development strategy of node areas in the “Silk Road Economic Belt”," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 274-285.
    4. Liang, Wei & Gan, Ting & Zhang, Wei, 2019. "Dynamic evolution of characteristics and decomposition of factors influencing industrial carbon dioxide emissions in China: 1991–2015," Structural Change and Economic Dynamics, Elsevier, vol. 49(C), pages 93-106.
    5. Yadong Ning & Boya Zhang & Tao Ding & Ming Zhang, 2017. "Analysis of regional decoupling relationship between energy-related CO2 emission and economic growth in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 87(2), pages 867-883, June.
    6. Schulhof, Vera & van Vuuren, Detlef & Kirchherr, Julian, 2022. "The Belt and Road Initiative (BRI): What Will it Look Like in the Future?," Technological Forecasting and Social Change, Elsevier, vol. 175(C).
    7. Petra Schneider & Lukas Folkens & Andreas Meyer & Tino Fauk, 2019. "Sustainability and Dimensions of a Nexus Approach in a Sharing Economy," Sustainability, MDPI, vol. 11(3), pages 1-19, February.
    8. Wuliyasu Bai & Liang Yan & Jingbo Liang & Long Zhang, 2022. "Mapping Knowledge Domain on Economic Growth and Water Sustainability: A Scientometric Analysis," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(11), pages 4137-4159, September.
    9. Dongchuan Wang & Mengqin Sang & Yong Huang & Liding Chen & Xiangwang Wei & Wengang Chen & Feicui Wang & Jinya Liu & Bingxu Hu, 2019. "Trajectory analysis of agricultural lands occupation and its decoupling relationships with the growth rate of non-agricultural GDP in the Jing-Jin-Tang region, China," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 21(2), pages 799-815, April.
    10. Sipan Li & Qunxi Gong & Shaolei Yang, 2019. "Analysis of the Agricultural Economy and Agricultural Pollution Using the Decoupling Index in Chengdu, China," IJERPH, MDPI, vol. 16(21), pages 1-11, October.
    11. Rongrong Xu & Yongxiang Wu & Gaoxu Wang & Xuan Zhang & Wei Wu & Zan Xu, 2019. "Evaluation of industrial water use efficiency considering pollutant discharge in China," PLOS ONE, Public Library of Science, vol. 14(8), pages 1-22, August.
    12. Yi Li & Yan Luo & Yingzi Wang & Laili Wang & Manhong Shen, 2017. "Decomposing the Decoupling of Water Consumption and Economic Growth in China’s Textile Industry," Sustainability, MDPI, vol. 9(3), pages 1-17, March.
    13. Meishu Wang & Hui Gong, 2019. "Expected Rural Wastewater Treatment Promoted by Provincial Local Discharge Limit Legislation in China," Sustainability, MDPI, vol. 11(10), pages 1-13, May.
    14. Ji Zheng & Yingjie Hu & Suocheng Dong & Yu Li, 2019. "The Spatiotemporal Pattern of Decoupling Transport CO 2 Emissions from Economic Growth across 30 Provinces in China," Sustainability, MDPI, vol. 11(9), pages 1-18, May.
    15. Oriol Pons & Albert De la Fuente & Antonio Aguado, 2016. "The Use of MIVES as a Sustainability Assessment MCDM Method for Architecture and Civil Engineering Applications," Sustainability, MDPI, vol. 8(5), pages 1-15, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Zilong & Chen, Xingpeng & Heck, Peter & Xue, Bing & Liu, Ye, 2015. "Empirical study on the environmental pressure versus economic growth in China during 1991–2012," Resources, Conservation & Recycling, Elsevier, vol. 101(C), pages 182-193.
    2. Lu, Qinli & Yang, Hong & Huang, Xianjin & Chuai, Xiaowei & Wu, Changyan, 2015. "Multi-sectoral decomposition in decoupling industrial growth from carbon emissions in the developed Jiangsu Province, China," Energy, Elsevier, vol. 82(C), pages 414-425.
    3. Leal, Patrícia Alexandra & Marques, António Cardoso & Fuinhas, José Alberto, 2019. "Decoupling economic growth from GHG emissions: Decomposition analysis by sectoral factors for Australia," Economic Analysis and Policy, Elsevier, vol. 62(C), pages 12-26.
    4. Lu Wan & Zi-Long Wang & Jhony Choon Yeong Ng, 2016. "Measurement Research on the Decoupling Effect of Industries’ Carbon Emissions—Based on the Equipment Manufacturing Industry in China," Energies, MDPI, vol. 9(11), pages 1-17, November.
    5. Qingshan Yang & Jie Liu & Yu Zhang, 2017. "Decoupling Agricultural Nonpoint Source Pollution from Crop Production: A Case Study of Heilongjiang Land Reclamation Area, China," Sustainability, MDPI, vol. 9(6), pages 1-11, June.
    6. Wang, Miao & Feng, Chao, 2018. "Investigating the drivers of energy-related CO2 emissions in China’s industrial sector: From regional and provincial perspectives," Structural Change and Economic Dynamics, Elsevier, vol. 46(C), pages 136-147.
    7. Wang, Wenwen & Li, Man & Zhang, Ming, 2017. "Study on the changes of the decoupling indicator between energy-related CO2 emission and GDP in China," Energy, Elsevier, vol. 128(C), pages 11-18.
    8. Doreen Fedrigo-Fazio & Jean-Pierre Schweitzer & Patrick Ten Brink & Leonardo Mazza & Alison Ratliff & Emma Watkins, 2016. "Evidence of Absolute Decoupling from Real World Policy Mixes in Europe," Sustainability, MDPI, vol. 8(6), pages 1-22, May.
    9. Jia, Hongxiang & Li, Tianjiao & Wang, Anjian & Liu, Guwang & Guo, Xiaoqian, 2021. "Decoupling analysis of economic growth and mineral resources consumption in China from 1992 to 2017: A comparison between tonnage and exergy perspective," Resources Policy, Elsevier, vol. 74(C).
    10. Papież, Monika & Śmiech, Sławomir & Frodyma, Katarzyna, 2022. "Does the European Union energy policy support progress in decoupling economic growth from emissions?," Energy Policy, Elsevier, vol. 170(C).
    11. Wei, Wendong & Cai, Wenqiu & Guo, Yi & Bai, Caiquan & Yang, Luzhen, 2020. "Decoupling relationship between energy consumption and economic growth in China's provinces from the perspective of resource security," Resources Policy, Elsevier, vol. 68(C).
    12. Huang, Yuan & Yu, Qiang & Wang, Ruirui, 2021. "Driving factors and decoupling effect of carbon footprint pressure in China: Based on net primary production," Technological Forecasting and Social Change, Elsevier, vol. 167(C).
    13. Katarzyna Frodyma & Monika Papież & Sławomir Śmiech, 2020. "Decoupling Economic Growth from Fossil Fuel Use—Evidence from 141 Countries in the 25-Year Perspective," Energies, MDPI, vol. 13(24), pages 1-21, December.
    14. Chen, B. & Yang, Q. & Li, J.S. & Chen, G.Q., 2017. "Decoupling analysis on energy consumption, embodied GHG emissions and economic growth — The case study of Macao," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 662-672.
    15. Kan, Siyi & Chen, Bin & Chen, Guoqian, 2019. "Worldwide energy use across global supply chains: Decoupled from economic growth?," Applied Energy, Elsevier, vol. 250(C), pages 1235-1245.
    16. Ozdemir, Ali Can, 2023. "Decomposition and decoupling analysis of carbon dioxide emissions in electricity generation by primary fossil fuels in Turkey," Energy, Elsevier, vol. 273(C).
    17. Yalan Zhao & Yaoqiu Kuang & Ningsheng Huang, 2016. "Decomposition Analysis in Decoupling Transport Output from Carbon Emissions in Guangdong Province, China," Energies, MDPI, vol. 9(4), pages 1-23, April.
    18. Michael L. Polemis & Panagiotis Fotis & Panayiotis G. Tzeremes & Nickolaos G. Tzeremes, 2022. "On the examination of the decoupling effect of air pollutants from economic growth: a convergence analysis for the US," Letters in Spatial and Resource Sciences, Springer, vol. 15(3), pages 691-707, December.
    19. Zhang, Yue-Jun & Da, Ya-Bin, 2015. "The decomposition of energy-related carbon emission and its decoupling with economic growth in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 1255-1266.
    20. Shasha Wang & Rongrong Li, 2018. "Toward the Coordinated Sustainable Development of Urban Water Resource Use and Economic Growth: An Empirical Analysis of Tianjin City, China," Sustainability, MDPI, vol. 10(5), pages 1-13, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:8:y:2016:i:3:p:222-:d:64736. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.