IDEAS home Printed from https://ideas.repec.org/r/eee/phsmap/v191y1992i1p47-50.html
   My bibliography  Save this item

Self-organized criticality in a forest-fire model

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Zinck, Richard D. & Johst, Karin & Grimm, Volker, 2010. "Wildfire, landscape diversity and the Drossel–Schwabl model," Ecological Modelling, Elsevier, vol. 221(1), pages 98-105.
  2. Macpherson, K.P. & MacKinnon, A.L., 1997. "One-dimensional percolation models of transient phenomena," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 243(1), pages 1-13.
  3. Khakzad, Nima, 2019. "Modeling wildfire spread in wildland-industrial interfaces using dynamic Bayesian network," Reliability Engineering and System Safety, Elsevier, vol. 189(C), pages 165-176.
  4. Honecker, A. & Peschel, I., 1997. "Length scales and power laws in the two-dimensional forest-fire model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 239(4), pages 509-530.
  5. Peyrard, N. & Dieckmann, U. & Franc, A., 2008. "Long-range correlations improve understanding of the influence of network structure on contact dynamics," Theoretical Population Biology, Elsevier, vol. 73(3), pages 383-394.
  6. Lara-Sagahón, A. & Govezensky, T. & Méndez-Sánchez, R.A. & José, M.V., 2006. "A lattice-based model of rotavirus epidemics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 359(C), pages 525-537.
  7. Honecker, A. & Peschel, I., 1996. "Critical properties of the one-dimensional forest-fire model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 229(3), pages 478-500.
  8. Vittorio Zanon & Fátima Viveiros & Catarina Silva & Ana Hipólito & Teresa Ferreira, 2008. "Impact of lightning on organic matter-rich soils: influence of soil grain size and organic matter content on underground fires," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 45(1), pages 19-31, April.
  9. Ruskin, H.J. & Feng, Y., 1997. "Self-organised criticality in some dissipative sandpile models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 245(3), pages 453-460.
  10. Marzouk, Cyril, 2016. "Fires on large recursive trees," Stochastic Processes and their Applications, Elsevier, vol. 126(1), pages 265-289.
  11. Tang, Da-Hai & Han, Xiao-Pu & Wang, Bing-Hong, 2010. "Stretched exponential distribution of recurrent time of wars in China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(13), pages 2637-2641.
  12. Gran, Joseph D. & Rundle, John B. & Turcotte, Donald L. & Holliday, James R. & Klein, William, 2011. "A damage model based on failure threshold weakening," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(7), pages 1269-1278.
  13. Bill McKelvey & Benyamin B. Lichtenstein & Pierpaolo Andriani, 2012. "When organisations and ecosystems interact: toward a law of requisite fractality in firms," International Journal of Complexity in Leadership and Management, Inderscience Enterprises Ltd, vol. 2(1/2), pages 104-136.
  14. LaViolette, Randall A. & Glass, Kristin & Colbaugh, Richard, 2009. "Deep information from limited observation of robust yet fragile systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(17), pages 3283-3287.
  15. Albano, Ezequiel V., 1995. "Spreading analysis and finite-size scaling study of the critical behavior of a forest fire model with immune trees," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 216(3), pages 213-226.
  16. Batac, Rene & Longjas, Anthony & Monterola, Christopher, 2012. "Statistical distributions of avalanche size and waiting times in an inter-sandpile cascade model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(3), pages 616-624.
  17. de Benicio, Rosilda B. & Stošić, Tatijana & de Figueirêdo, P.H. & Stošić, Borko D., 2013. "Multifractal behavior of wild-land and forest fire time series in Brazil," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(24), pages 6367-6374.
  18. Salvador Pueyo, 2014. "Ecological Econophysics for Degrowth," Sustainability, MDPI, vol. 6(6), pages 1-53, May.
  19. Satulovsky, Javier E., 1997. "On the synchronizing mechanism of a class of cellular automata," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 237(1), pages 52-58.
  20. Bak, Per, 1992. "Self-organized criticality in non-conservative models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 191(1), pages 41-46.
  21. Téphany, H. & Nahmias, J. & Duarte, J.A.M.S., 1997. "Combustion on heterogeneous media a critical phenomenon," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 242(1), pages 57-69.
  22. Drossel, B. & Schwabl, F., 1993. "Forest-fire model with immune trees," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 199(2), pages 183-197.
  23. Telesca, Luciano & Lasaponara, Rosa, 2010. "Analysis of time-scaling properties in forest-fire sequence observed in Italy," Ecological Modelling, Elsevier, vol. 221(1), pages 90-93.
  24. Benavent-Corai, J. & Rojo, C. & Suárez-Torres, J. & Velasco-García, L., 2007. "Scaling properties in forest fire sequences: The human role in the order of nature," Ecological Modelling, Elsevier, vol. 205(3), pages 336-342.
  25. Wang, Jian & Song, Weiguo & Zheng, Hongyang & Telesca, Luciano, 2010. "Temporal scaling behavior of human-caused fires and their connection to relative humidity of the atmosphere," Ecological Modelling, Elsevier, vol. 221(1), pages 85-89.
  26. Lin, Jianyi & Rinaldi, Sergio, 2009. "A derivation of the statistical characteristics of forest fires," Ecological Modelling, Elsevier, vol. 220(7), pages 898-903.
  27. Ghermandi, Luciana & Lasaponara, Rosa & Telesca, Luciano, 2010. "Intra-annual time dynamical patterns of fire sequences observed in Patagonia (Argentina)," Ecological Modelling, Elsevier, vol. 221(1), pages 94-97.
  28. Bonabeau, Eric, 1994. "Self-reorganizations in a simple model of the immune system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 208(3), pages 336-350.
  29. Kondor, Dániel & Mátray, Péter & Csabai, István & Vattay, Gábor, 2013. "Measuring the dimension of partially embedded networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(18), pages 4160-4171.
  30. De Caux, Robert & McGroarty, Frank & Brede, Markus, 2017. "The evolution of risk and bailout strategy in banking systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 468(C), pages 109-118.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.