IDEAS home Printed from https://ideas.repec.org/r/eee/jotrge/v69y2018icp45-57.html
   My bibliography  Save this item

Spatial variations in urban public ridership derived from GPS trajectories and smart card data

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Zhenbao Wang & Xin Gong & Yuchen Zhang & Shuyue Liu & Ning Chen, 2023. "Multi-Scale Geographically Weighted Elasticity Regression Model to Explore the Elastic Effects of the Built Environment on Ride-Hailing Ridership," Sustainability, MDPI, vol. 15(6), pages 1-22, March.
  2. Zhang, Xiaojian & Zhou, Zhengze & Xu, Yiming & Zhao, Xilei, 2024. "Analyzing spatial heterogeneity of ridesourcing usage determinants using explainable machine learning," Journal of Transport Geography, Elsevier, vol. 114(C).
  3. Shah, Nitesh R. & Guo, Jing & Han, Lee D. & Cherry, Christopher R., 2023. "Why do people take e-scooter trips? Insights on temporal and spatial usage patterns of detailed trip data," Transportation Research Part A: Policy and Practice, Elsevier, vol. 173(C).
  4. Wu, Pan & Xu, Lunhui & Zhong, Lingshu & Gao, Kun & Qu, Xiaobo & Pei, Mingyang, 2022. "Revealing the determinants of the intermodal transfer ratio between metro and bus systems considering spatial variations," Journal of Transport Geography, Elsevier, vol. 104(C).
  5. Svanberg , Lisa & Pyddoke, Roger, 2020. "Policies for on-board crowding in public transportation : a literature review," Working Papers 2020:6, Swedish National Road & Transport Research Institute (VTI).
  6. Wang, Jing & Wan, Feng & Dong, Chunjiao & Yin, Chaoying & Chen, Xiaoyu, 2023. "Spatiotemporal effects of built environment factors on varying rail transit station ridership patterns," Journal of Transport Geography, Elsevier, vol. 109(C).
  7. Lyu, Tao & Wang, Yuanqing & Ji, Shujuan & Feng, Tao & Wu, Zhouhao, 2023. "A multiscale spatial analysis of taxi ridership," Journal of Transport Geography, Elsevier, vol. 113(C).
  8. Yang Liu & Yanjie Ji & Zhuangbin Shi & Liangpeng Gao, 2018. "The Influence of the Built Environment on School Children’s Metro Ridership: An Exploration Using Geographically Weighted Poisson Regression Models," Sustainability, MDPI, vol. 10(12), pages 1-16, December.
  9. Zhang, Xiaohu & Xu, Yang & Tu, Wei & Ratti, Carlo, 2018. "Do different datasets tell the same story about urban mobility — A comparative study of public transit and taxi usage," Journal of Transport Geography, Elsevier, vol. 70(C), pages 78-90.
  10. Kevin Credit & Zander Arnao, 2023. "A method to derive small area estimates of linked commuting trips by mode from open source LODES and ACS data," Environment and Planning B, , vol. 50(3), pages 709-722, March.
  11. F. Crawford & D. P. Watling & R. D. Connors, 2023. "Analysing Spatial Intrapersonal Variability of Road Users Using Point-to-Point Sensor Data," Networks and Spatial Economics, Springer, vol. 23(2), pages 373-406, June.
  12. Yang, Xiong & Zhuge, Chengxiang & Shao, Chunfu & Huang, Yuantan & Hayse Chiwing G. Tang, Justin & Sun, Mingdong & Wang, Pinxi & Wang, Shiqi, 2022. "Characterizing mobility patterns of private electric vehicle users with trajectory data," Applied Energy, Elsevier, vol. 321(C).
  13. Gao, Fan & Han, Chunyang & Yang, Linchuan & Liang, Jian & He, Xuan & Li, Fan, 2024. "Analyzing spatiotemporal distribution patterns of metro ridership: Comparison between common-class and business-class carriage service," Journal of Transport Geography, Elsevier, vol. 115(C).
  14. Aston, Laura & Currie, Graham & Kamruzzaman, Md. & Delbosc, Alexa & Fournier, Nicholas & Teller, David, 2020. "Addressing transit mode location bias in built environment-transit mode use research," Journal of Transport Geography, Elsevier, vol. 87(C).
  15. Fan Gao & Jinjun Tang & Zhitao Li, 2022. "Effects of spatial units and travel modes on urban commuting demand modeling," Transportation, Springer, vol. 49(6), pages 1549-1575, December.
  16. Cui, Zhiwei & Fu, Xin & Wang, Jianwei & Qiang, Yongjie & Jiang, Ying & Long, Zhiyou, 2022. "How does COVID-19 pandemic impact cities' logistics performance? An evidence from China's highway freight transport," Transport Policy, Elsevier, vol. 120(C), pages 11-22.
  17. Md. Nazmul Huda Naim & Mohammed Sarfaraz Gani Adnan & Ashraf Dewan & Khatun E. Zannat, 2022. "Assessing the performance of public transport services in a developing country: A case study using data envelopment analysis," Growth and Change, Wiley Blackwell, vol. 53(1), pages 377-409, March.
  18. Tang, Jinjun & Gao, Fan & Han, Chunyang & Cen, Xuekai & Li, Zhitao, 2021. "Uncovering the spatially heterogeneous effects of shared mobility on public transit and taxi," Journal of Transport Geography, Elsevier, vol. 95(C).
  19. Wenyuan Gao & Chuyun Zhao & Yu Zeng & Jinjun Tang, 2024. "Exploring the Spatio-Temporally Heterogeneous Impact of Traffic Network Structure on Ride-Hailing Emissions Using Shenzhen, China, as a Case Study," Sustainability, MDPI, vol. 16(11), pages 1-31, May.
  20. Jinjun Tang & Fan Gao & Fang Liu & Wenhui Zhang & Yong Qi, 2019. "Understanding Spatio-Temporal Characteristics of Urban Travel Demand Based on the Combination of GWR and GLM," Sustainability, MDPI, vol. 11(19), pages 1-19, October.
  21. Junyong Jang & Yongbin Cho & Juntae Park, 2024. "Bus Route Sketching: A Multimetric Analysis from the User’s and Operator’s Perspectives," Sustainability, MDPI, vol. 16(16), pages 1-19, August.
  22. Mu Lin & Zhengdong Huang & Tianhong Zhao & Ying Zhang & Heyi Wei, 2022. "Spatiotemporal Evolution of Travel Pattern Using Smart Card Data," Sustainability, MDPI, vol. 14(15), pages 1-16, August.
  23. Tu, Wei & Santi, Paolo & Zhao, Tianhong & He, Xiaoyi & Li, Qingquan & Dong, Lei & Wallington, Timothy J. & Ratti, Carlo, 2019. "Acceptability, energy consumption, and costs of electric vehicle for ride-hailing drivers in Beijing," Applied Energy, Elsevier, vol. 250(C), pages 147-160.
  24. Li, Zhitao & Tang, Jinjun & Zhao, Chuyun & Gao, Fan, 2023. "Improved centrality measure based on the adapted PageRank algorithm for urban transportation multiplex networks," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
  25. Li, Mengya & Kwan, Mei-Po & Hu, Wenyan & Li, Rui & Wang, Jun, 2023. "Examining the effects of station-level factors on metro ridership using multiscale geographically weighted regression," Journal of Transport Geography, Elsevier, vol. 113(C).
  26. Bo Huang & Yulun Zhou & Zhigang Li & Yimeng Song & Jixuan Cai & Wei Tu, 2020. "Evaluating and characterizing urban vibrancy using spatial big data: Shanghai as a case study," Environment and Planning B, , vol. 47(9), pages 1543-1559, November.
  27. Yating Fan & Da Kuang & Wei Tu & Yu Ye, 2023. "Which Spatial Elements Influence Waterfront Space Vitality the Most?—A Comparative Tracking Study of the Maozhou River Renewal Project in Shenzhen, China," Land, MDPI, vol. 12(6), pages 1-18, June.
  28. Chen, Enhui & Stathopoulos, Amanda & Nie, Yu (Marco), 2022. "Transfer station choice in a multimodal transit system: An empirical study," Transportation Research Part A: Policy and Practice, Elsevier, vol. 165(C), pages 337-355.
  29. Marques, Samuel de França & Pitombo, Cira Souza, 2023. "Local modeling as a solution to the lack of stop-level ridership data," Journal of Transport Geography, Elsevier, vol. 112(C).
  30. Ying Ni & Jiaqi Chen, 2020. "Exploring the Effects of the Built Environment on Two Transfer Modes for Metros: Dockless Bike Sharing and Taxis," Sustainability, MDPI, vol. 12(5), pages 1-20, March.
  31. Iva Bojic & Dániel Kondor & Wei Tu & Ke Mai & Paolo Santi & Carlo Ratti, 2021. "Identifying the Potential for Partial Integration of Private and Public Transportation," Sustainability, MDPI, vol. 13(6), pages 1-16, March.
  32. Zhang, Mengzhu & Zhao, Pengjun, 2021. "Literature review on urban transport equity in transitional China: From empirical studies to universal knowledge," Journal of Transport Geography, Elsevier, vol. 96(C).
  33. Zhou, Yang & Thill, Jean-Claude & Xu, Yang & Fang, Zhixiang, 2021. "Variability in individual home-work activity patterns," Journal of Transport Geography, Elsevier, vol. 90(C).
  34. Zhang, Xiaojian & Zhao, Xilei, 2022. "Machine learning approach for spatial modeling of ridesourcing demand," Journal of Transport Geography, Elsevier, vol. 100(C).
  35. Gao, Fan & Yang, Linchuan & Han, Chunyang & Tang, Jinjun & Li, Zhitao, 2022. "A network-distance-based geographically weighted regression model to examine spatiotemporal effects of station-level built environments on metro ridership," Journal of Transport Geography, Elsevier, vol. 105(C).
  36. Fangye Du & Jiaoe Wang & Yu Liu & Zihao Zhou & Haitao Jin, 2022. "Equity in Health-Seeking Behavior of Groups Using Different Transportations," IJERPH, MDPI, vol. 19(5), pages 1-16, February.
  37. Ding, Chuan & Cao, Xinyu & Yu, Bin & Ju, Yang, 2021. "Non-linear associations between zonal built environment attributes and transit commuting mode choice accounting for spatial heterogeneity," Transportation Research Part A: Policy and Practice, Elsevier, vol. 148(C), pages 22-35.
  38. Yang, Xiping & Fang, Zhixiang & Xu, Yang & Yin, Ling & Li, Junyi & Lu, Shiwei, 2019. "Spatial heterogeneity in spatial interaction of human movements—Insights from large-scale mobile positioning data," Journal of Transport Geography, Elsevier, vol. 78(C), pages 29-40.
  39. Renee Zahnow & Jonathan Corcoran, 2021. "Crime and bus stops: An examination using transit smart card and crime data," Environment and Planning B, , vol. 48(4), pages 706-723, May.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.