My bibliography
Save this item
Curve forecasting by functional autoregression
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Matteo Iacopini & Dominique Guégan, 2018. "Nonparametric Forecasting of Multivariate Probability Density Functions," Working Papers 2018:15, Department of Economics, University of Venice "Ca' Foscari".
- Benatia, David & Carrasco, Marine & Florens, Jean-Pierre, 2017.
"Functional linear regression with functional response,"
Journal of Econometrics, Elsevier, vol. 201(2), pages 269-291.
- David Benatia & Marine Carrasco & Jean-Pierre Florens, 2017. "Functional linear regression with functional response," Post-Print hal-03523162, HAL.
- Sven Otto & Nazarii Salish, 2022. "Approximate Factor Models for Functional Time Series," Papers 2201.02532, arXiv.org, revised May 2024.
- Blanke, D. & Bosq, D., 2016. "Detecting and estimating intensity of jumps for discretely observed ARMAD(1,1) processes," Journal of Multivariate Analysis, Elsevier, vol. 146(C), pages 119-137.
- Clive G. Bowsher & Roland Meeks, 2006.
"High Dimensional Yield Curves: Models and Forecasting,"
OFRC Working Papers Series
2006fe11, Oxford Financial Research Centre.
- Clive Bowsher & Roland Meeks, 2006. "High Dimensional Yield Curves: Models and Forecasting," Economics Series Working Papers 2006-FE-11, University of Oxford, Department of Economics.
- Clive Bowsher & Roland Meeks, 2006. "High Dimensional Yield Curves: Models and Forecasting," Economics Papers 2006-W12, Economics Group, Nuffield College, University of Oxford.
- Atefeh Zamani & Hossein Haghbin & Maryam Hashemi & Rob J. Hyndman, 2022.
"Seasonal functional autoregressive models,"
Journal of Time Series Analysis, Wiley Blackwell, vol. 43(2), pages 197-218, March.
- Atefeh Zamani & Hossein Haghbin & Maryam Hashemi & Rob J Hyndman, 2019. "Seasonal Functional Autoregressive Models," Monash Econometrics and Business Statistics Working Papers 16/19, Monash University, Department of Econometrics and Business Statistics.
- Niccol`o Ajroldi & Jacopo Diquigiovanni & Matteo Fontana & Simone Vantini, 2022. "Conformal Prediction Bands for Two-Dimensional Functional Time Series," Papers 2207.13656, arXiv.org, revised Jul 2023.
- Horváth, Lajos & Husková, Marie & Kokoszka, Piotr, 2010. "Testing the stability of the functional autoregressive process," Journal of Multivariate Analysis, Elsevier, vol. 101(2), pages 352-367, February.
- Goia, Aldo & May, Caterina & Fusai, Gianluca, 2010. "Functional clustering and linear regression for peak load forecasting," International Journal of Forecasting, Elsevier, vol. 26(4), pages 700-711, October.
- Philip Nadler & Alessio Sancetta, 2023. "Empirical Asset Pricing with Functional Factors," Journal of Financial Econometrics, Oxford University Press, vol. 21(4), pages 1258-1281.
- Rob J. Hyndman & Han Lin Shang, 2008. "Rainbow plots, Bagplots and Boxplots for Functional Data," Monash Econometrics and Business Statistics Working Papers 9/08, Monash University, Department of Econometrics and Business Statistics.
- Characiejus, Vaidotas & Rice, Gregory, 2020. "A general white noise test based on kernel lag-window estimates of the spectral density operator," Econometrics and Statistics, Elsevier, vol. 13(C), pages 175-196.
- Álvarez-Liébana, J. & Bosq, D. & Ruiz-Medina, M.D., 2017. "Asymptotic properties of a component-wise ARH(1) plug-in predictor," Journal of Multivariate Analysis, Elsevier, vol. 155(C), pages 12-34.
- Horváth, Lajos & Liu, Zhenya & Rice, Gregory & Wang, Shixuan, 2020.
"A functional time series analysis of forward curves derived from commodity futures,"
International Journal of Forecasting, Elsevier, vol. 36(2), pages 646-665.
- Lajos Horváth & Zhenya Liu & Gregory Rice & Shixuan Wang, 2020. "A functional time series analysis of forward curves derived from commodity futures," Post-Print hal-03513421, HAL.
- Bowsher, Clive G. & Meeks, Roland, 2008.
"The Dynamics of Economic Functions: Modeling and Forecasting the Yield Curve,"
Journal of the American Statistical Association, American Statistical Association, vol. 103(484), pages 1419-1437.
- Clive Bowsher & Roland Meeks, 2008. "The Dynamics of Economic Functions: Modelling and Forecasting the Yield Curve," OFRC Working Papers Series 2008fe24, Oxford Financial Research Centre.
- Clive G. Bowsher & Roland Meeks, 2008. "The dynamics of economics functions: modelling and forecasting the yield curve," Working Papers 0804, Federal Reserve Bank of Dallas.
- Clive G. Bowsher & Roland Meeks, 2008. "The Dynamics of Economic Functions: Modelling and Forecasting the Yield Curve," Economics Papers 2008-W05, Economics Group, Nuffield College, University of Oxford.
- Horváth, Lajos & Hušková, Marie & Rice, Gregory, 2013. "Test of independence for functional data," Journal of Multivariate Analysis, Elsevier, vol. 117(C), pages 100-119.
- Ajroldi, Niccolò & Diquigiovanni, Jacopo & Fontana, Matteo & Vantini, Simone, 2023. "Conformal prediction bands for two-dimensional functional time series," Computational Statistics & Data Analysis, Elsevier, vol. 187(C).
- Daniel R. Kowal & David S. Matteson & David Ruppert, 2019. "Functional Autoregression for Sparsely Sampled Data," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 37(1), pages 97-109, January.
- Gabrys Robertas & Hörmann Siegfried & Kokoszka Piotr, 2013. "Monitoring the Intraday Volatility Pattern," Journal of Time Series Econometrics, De Gruyter, vol. 5(2), pages 87-116, July.
- Battey, Heather & Sancetta, Alessio, 2013. "Conditional estimation for dependent functional data," Journal of Multivariate Analysis, Elsevier, vol. 120(C), pages 1-17.
- Haixu Wang & Jiguo Cao, 2023. "Nonlinear prediction of functional time series," Environmetrics, John Wiley & Sons, Ltd., vol. 34(5), August.
- Zhang, Xianyang, 2016. "White noise testing and model diagnostic checking for functional time series," Journal of Econometrics, Elsevier, vol. 194(1), pages 76-95.
- Almeida, Caio & Vicente, José, 2008.
"The role of no-arbitrage on forecasting: Lessons from a parametric term structure model,"
Journal of Banking & Finance, Elsevier, vol. 32(12), pages 2695-2705, December.
- Almeida, Caio Ibsen Rodrigues de & Vicente, José, 2007. "The role of no-arbitrage on forecasting: lessons from a parametric term structure model," FGV EPGE Economics Working Papers (Ensaios Economicos da EPGE) 657, EPGE Brazilian School of Economics and Finance - FGV EPGE (Brazil).
- Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022.
"Forecasting: theory and practice,"
International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
- Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
- Lajos Horváth & Zhenya Liu & Curtis Miller & Weiqing Tang, 2024. "Breaks in term structures: Evidence from the oil futures markets," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 29(2), pages 2317-2341, April.
- Devin Didericksen & Piotr Kokoszka & Xi Zhang, 2012. "Empirical properties of forecasts with the functional autoregressive model," Computational Statistics, Springer, vol. 27(2), pages 285-298, June.
- Koo, B. & La Vecchia, D. & Linton, O., 2019. "Nonparametric Recovery of the Yield Curve Evolution from Cross-Section and Time Series Information," Cambridge Working Papers in Economics 1916, Faculty of Economics, University of Cambridge.
- Gregory Rice & Han Lin Shang, 2017. "A Plug-in Bandwidth Selection Procedure for Long-Run Covariance Estimation with Stationary Functional Time Series," Journal of Time Series Analysis, Wiley Blackwell, vol. 38(4), pages 591-609, July.
- Dominique Guegan & Matteo Iacopini, 2018. "Nonparametric forecasting of multivariate probability density functions," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-01821815, HAL.
- Canale, Antonio & Vantini, Simone, 2016. "Constrained functional time series: Applications to the Italian gas market," International Journal of Forecasting, Elsevier, vol. 32(4), pages 1340-1351.
- Brendan K. Beare & Juwon Seo & Won-Ki Seo, 2017. "Cointegrated Linear Processes in Hilbert Space," Journal of Time Series Analysis, Wiley Blackwell, vol. 38(6), pages 1010-1027, November.
- Klepsch, J. & Klüppelberg, C., 2017. "An innovations algorithm for the prediction of functional linear processes," Journal of Multivariate Analysis, Elsevier, vol. 155(C), pages 252-271.
- Horváth, Lajos & Kokoszka, Piotr & Rice, Gregory, 2014. "Testing stationarity of functional time series," Journal of Econometrics, Elsevier, vol. 179(1), pages 66-82.
- Caio Almeida & Romeu Gomes & André Leite & Axel Simonsen & José Vicente, 2009.
"Does Curvature Enhance Forecasting?,"
International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 12(08), pages 1171-1196.
- Caio Almeida & Romeu Gomes & André Leite & José Vicente, 2007. "Does Curvature Enhance Forecasting?," Working Papers Series 155, Central Bank of Brazil, Research Department.
- Álvarez-Liébana, Javier & Bosq, Denis & Ruiz-Medina, María D., 2016. "Consistency of the plug-in functional predictor of the Ornstein–Uhlenbeck process in Hilbert and Banach spaces," Statistics & Probability Letters, Elsevier, vol. 117(C), pages 12-22.
- Mestre, Guillermo & Portela, José & Rice, Gregory & Muñoz San Roque, Antonio & Alonso, Estrella, 2021. "Functional time series model identification and diagnosis by means of auto- and partial autocorrelation analysis," Computational Statistics & Data Analysis, Elsevier, vol. 155(C).
- Franchi, Massimo & Paruolo, Paolo, 2020.
"Cointegration In Functional Autoregressive Processes,"
Econometric Theory, Cambridge University Press, vol. 36(5), pages 803-839, October.
- Massimo Franchi & Paolo Paruolo, 2017. "Cointegration in functional autoregressive processes," DSS Empirical Economics and Econometrics Working Papers Series 2017/5, Centre for Empirical Economics and Econometrics, Department of Statistics, "Sapienza" University of Rome.
- Massimo Franchi & Paolo Paruolo, 2017. "Cointegration in functional autoregressive processes," Papers 1712.07522, arXiv.org, revised Oct 2018.
- Chen, Yichao & Pun, Chi Seng, 2019. "A bootstrap-based KPSS test for functional time series," Journal of Multivariate Analysis, Elsevier, vol. 174(C).
- Alexander Gleim & Nazarii Salish, 2022. "Forecasting Environmental Data: An example to ground-level ozone concentration surfaces," Papers 2202.03332, arXiv.org.
- Butler, Sunil & Kokoszka, Piotr & Miao, Hong & Shang, Han Lin, 2021. "Neural network prediction of crude oil futures using B-splines," Energy Economics, Elsevier, vol. 94(C).
- Klepsch, J. & Klüppelberg, C. & Wei, T., 2017. "Prediction of functional ARMA processes with an application to traffic data," Econometrics and Statistics, Elsevier, vol. 1(C), pages 128-149.
- Alexander Aue & Diogo Dubart Norinho & Siegfried Hörmann, 2015. "On the Prediction of Stationary Functional Time Series," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(509), pages 378-392, March.
- Bosq, D., 2014. "Computing the best linear predictor in a Hilbert space. Applications to general ARMAH processes," Journal of Multivariate Analysis, Elsevier, vol. 124(C), pages 436-450.
- Koo, Bonsoo & La Vecchia, Davide & Linton, Oliver, 2021.
"Estimation of a nonparametric model for bond prices from cross-section and time series information,"
Journal of Econometrics, Elsevier, vol. 220(2), pages 562-588.
- Bonsoo Koo & Davide La Vecchia & Oliver Linton, 2020. "Estimation of a Nonparametric Model for Bond Prices from Cross-Section and Time Series Information," Monash Econometrics and Business Statistics Working Papers 4/20, Monash University, Department of Econometrics and Business Statistics.
- Rice, Gregory & Wirjanto, Tony & Zhao, Yuqian, 2023. "Exploring volatility of crude oil intraday return curves: A functional GARCH-X model," Journal of Commodity Markets, Elsevier, vol. 32(C).
- Boukhiar, Souad & Mourid, Tahar, 2022. "Resolvent estimators for functional autoregressive processes with random coefficients," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
- Horváth, Lajos & Reeder, Ron, 2012. "Detecting changes in functional linear models," Journal of Multivariate Analysis, Elsevier, vol. 111(C), pages 310-334.
- Cerovecki, Clément & Hörmann, Siegfried, 2017. "On the CLT for discrete Fourier transforms of functional time series," Journal of Multivariate Analysis, Elsevier, vol. 154(C), pages 282-295.
- Dominique Guegan & Matteo Iacopini, 2018. "Nonparametric forecasting of multivariate probability density functions," Post-Print halshs-01821815, HAL.
- Lajos Horváth & Gregory Rice, 2014. "Extensions of some classical methods in change point analysis," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(2), pages 219-255, June.
- Dominique Guégan & Matteo Iacopini, 2018. "Nonparameteric forecasting of multivariate probability density functions," Documents de travail du Centre d'Economie de la Sorbonne 18012, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
- Xu, Meng & Li, Jialiang & Chen, Ying, 2017. "Varying coefficient functional autoregressive model with application to the U.S. treasuries," Journal of Multivariate Analysis, Elsevier, vol. 159(C), pages 168-183.
- Rice, Gregory & Wirjanto, Tony & Zhao, Yuqian, 2021. "Exploring volatility of crude oil intra-day return curves: a functional GARCH-X Model," MPRA Paper 109231, University Library of Munich, Germany.
- Kada Kloucha, Meryem & Mourid, Tahar, 2019. "Best linear predictor of a C[0,1]-valued functional autoregressive process," Statistics & Probability Letters, Elsevier, vol. 150(C), pages 114-120.