IDEAS home Printed from https://ideas.repec.org/p/bcb/wpaper/155.html
   My bibliography  Save this paper

Does Curvature Enhance Forecasting?

Author

Listed:
  • Caio Almeida
  • Romeu Gomes
  • André Leite
  • José Vicente

Abstract

In this paper, we analyze the importance of curvature term structure movements on forecasts of interest rate means. An extension of the exponential three-factor Diebold and Li (2006) model is proposed, where a fourth factor captures a second type of curvature. The new factor increases model ability to generate more volatile and non-linear yield curves, leading to a significant improvement of forecasting ability, in special for short-term maturities. A forecasting experiment adopting Brazilian term structure data on Interbank Deposits (IDs) generates statistically significant lower bias and Root Mean Square Errors (RMSE) for the double curvature model, for most examined maturities, under three different forecasting horizons. Consistent with recent empirical analysis of bond risk premium, when a second curvature is included, despite explaining only a small portion of interest rate variability, it changes the structure of model risk premium leading to better predictions of bond excess returns

Suggested Citation

  • Caio Almeida & Romeu Gomes & André Leite & José Vicente, 2007. "Does Curvature Enhance Forecasting?," Working Papers Series 155, Central Bank of Brazil, Research Department.
  • Handle: RePEc:bcb:wpaper:155
    as

    Download full text from publisher

    File URL: https://www.bcb.gov.br/content/publicacoes/WorkingPaperSeries/wps155.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Kargin, V. & Onatski, A., 2008. "Curve forecasting by functional autoregression," Journal of Multivariate Analysis, Elsevier, vol. 99(10), pages 2508-2526, November.
    2. Svensson, L.E.O., 1993. "Monetary Policy with Flexible Exchange Rates and Foreward Interest Rates as Indicators," Papers 559, Stockholm - International Economic Studies.
    3. Huse, Cristian, 2011. "Term structure modelling with observable state variables," Journal of Banking & Finance, Elsevier, vol. 35(12), pages 3240-3252.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rafael Barros de Rezende, 2011. "Giving Flexibility to the Nelson-Siegel Class of Term Structure Models," Brazilian Review of Finance, Brazilian Society of Finance, vol. 9(1), pages 27-49.
    2. Caldeira, João F. & Laurini, Márcio P. & Portugal, Marcelo S., 2010. "Bayesian Inference Applied to Dynamic Nelson-Siegel Model with Stochastic Volatility," Brazilian Review of Econometrics, Sociedade Brasileira de Econometria - SBE, vol. 30(1), October.
    3. Leite, André Luís & Filho, Romeu Braz Pereira Gomes & Vicente, José Valentim Machado, 2010. "Forecasting the yield curve: A statistical model with market survey data," International Review of Financial Analysis, Elsevier, vol. 19(2), pages 108-112, March.
    4. Badics, Milan Csaba & Huszar, Zsuzsa R. & Kotro, Balazs B., 2023. "The impact of crisis periods and monetary decisions of the Fed and the ECB on the sovereign yield curve network," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 88(C).
    5. Caio Almeida & Kym Ardison & Daniela Kubudi & Axel Simonsen & José Vicente, 2018. "Forecasting Bond Yields with Segmented Term Structure Models," Journal of Financial Econometrics, Oxford University Press, vol. 16(1), pages 1-33.
    6. Matsumura, Marco & Moreira, Ajax & Vicente, José, 2011. "Forecasting the yield curve with linear factor models," International Review of Financial Analysis, Elsevier, vol. 20(5), pages 237-243.
    7. Mr. Rodrigo Cabral & Mr. Richard Munclinger & Mr. Luiz Alves & Mr. Marco Rodriguez Waldo, 2011. "On Brazil’s Term Structure: Stylized Facts and Analysis of Macroeconomic Interactions," IMF Working Papers 2011/113, International Monetary Fund.
    8. Almeida, Caio & Gomes, Romeu & Leite, André & Vicente, José, 2008. "Movimentos da Estrutura a Termo e Critérios de Minimização do Erro de Previsão em um Modelo Paramétrico Exponencial," Revista Brasileira de Economia - RBE, EPGE Brazilian School of Economics and Finance - FGV EPGE (Brazil), vol. 62(4), December.
    9. Joao Frois Caldeira & Guilherme Valle Moura & Marcelo Savino Portugal, 2011. "Efficient Interest Ratecurve Estimation And Forecasting In Brazil," Anais do XXXVII Encontro Nacional de Economia [Proceedings of the 37th Brazilian Economics Meeting] 133, ANPEC - Associação Nacional dos Centros de Pós-Graduação em Economia [Brazilian Association of Graduate Programs in Economics].
    10. Almeida, Caio & Lund, Bruno, 2014. "Immunization of Fixed-Income Portfolios Using an Exponential Parametric Model," Brazilian Review of Econometrics, Sociedade Brasileira de Econometria - SBE, vol. 34(2), November.
    11. Flávio de Freitas Val & Claudio Henrique da Silveira Barbedo & Marcelo Verdini Maia, 2011. "Inflation expectation and implicit inflation: does market research provide accurate measures?," Brazilian Business Review, Fucape Business School, vol. 8(3), pages 83-100, July.
    12. Marco Shinobu Matsumura & Ajax Reynaldo Bello Moreira & José Valentim Machado Vicente, 2010. "Forecasting the Yield Curve with Linear Factor Models," Working Papers Series 223, Central Bank of Brazil, Research Department.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Almeida, Caio & Vicente, José, 2008. "The role of no-arbitrage on forecasting: Lessons from a parametric term structure model," Journal of Banking & Finance, Elsevier, vol. 32(12), pages 2695-2705, December.
    2. Koo, B. & La Vecchia, D. & Linton, O., 2019. "Nonparametric Recovery of the Yield Curve Evolution from Cross-Section and Time Series Information," Cambridge Working Papers in Economics 1916, Faculty of Economics, University of Cambridge.
    3. Almeida, Caio & Gomes, Romeu & Leite, André & Vicente, José, 2008. "Movimentos da Estrutura a Termo e Critérios de Minimização do Erro de Previsão em um Modelo Paramétrico Exponencial," Revista Brasileira de Economia - RBE, EPGE Brazilian School of Economics and Finance - FGV EPGE (Brazil), vol. 62(4), December.
    4. Leite, André Luís & Filho, Romeu Braz Pereira Gomes & Vicente, José Valentim Machado, 2010. "Forecasting the yield curve: A statistical model with market survey data," International Review of Financial Analysis, Elsevier, vol. 19(2), pages 108-112, March.
    5. Koo, Bonsoo & La Vecchia, Davide & Linton, Oliver, 2021. "Estimation of a nonparametric model for bond prices from cross-section and time series information," Journal of Econometrics, Elsevier, vol. 220(2), pages 562-588.
    6. Matsumura, Marco & Moreira, Ajax & Vicente, José, 2011. "Forecasting the yield curve with linear factor models," International Review of Financial Analysis, Elsevier, vol. 20(5), pages 237-243.
    7. Sven Otto & Nazarii Salish, 2022. "Approximate Factor Models for Functional Time Series," Papers 2201.02532, arXiv.org, revised May 2024.
    8. Daniela Kubudi & José Valentim Vicente, 2016. "A Joint Model of Nominal and Real Yield Curves," Working Papers Series 452, Central Bank of Brazil, Research Department.
    9. Philip Nadler & Alessio Sancetta, 2023. "Empirical Asset Pricing with Functional Factors," Journal of Financial Econometrics, Oxford University Press, vol. 21(4), pages 1258-1281.
    10. Bowsher, Clive G. & Meeks, Roland, 2008. "The Dynamics of Economic Functions: Modeling and Forecasting the Yield Curve," Journal of the American Statistical Association, American Statistical Association, vol. 103(484), pages 1419-1437.
    11. Gabrys Robertas & Hörmann Siegfried & Kokoszka Piotr, 2013. "Monitoring the Intraday Volatility Pattern," Journal of Time Series Econometrics, De Gruyter, vol. 5(2), pages 87-116, July.
    12. Zhang, Xianyang, 2016. "White noise testing and model diagnostic checking for functional time series," Journal of Econometrics, Elsevier, vol. 194(1), pages 76-95.
    13. Nunes, Clemens Vinicius & Doi, Jonas & Fernandes, Marcelo, 2017. "Disagreement in Inflation Forecasts and Inflation Risk Premia in Brazil," Brazilian Review of Econometrics, Sociedade Brasileira de Econometria - SBE, vol. 37(1), May.
    14. Gül, Selçuk & Taştan, Hüseyin, 2020. "The impact of monetary policy stance, financial conditions, and the GFC on investment-cash flow sensitivity," International Review of Economics & Finance, Elsevier, vol. 69(C), pages 692-707.
    15. Wagner Piazza Gaglianone, 2017. "Empirical Findings on Inflation Expectations in Brazil: a survey," Working Papers Series 464, Central Bank of Brazil, Research Department.
    16. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    17. Fernando A. Broner & Guido Lorenzoni & Sergio L. Schmukler, 2013. "Why Do Emerging Economies Borrow Short Term?," Journal of the European Economic Association, European Economic Association, vol. 11, pages 67-100, January.
    18. Klepsch, J. & Klüppelberg, C., 2017. "An innovations algorithm for the prediction of functional linear processes," Journal of Multivariate Analysis, Elsevier, vol. 155(C), pages 252-271.
    19. Seppälä, Juha, 2000. "The term structure of real interest rates : Theory and evidence form UK index-linked bonds," Research Discussion Papers 22/2000, Bank of Finland.
    20. Chen, Yichao & Pun, Chi Seng, 2019. "A bootstrap-based KPSS test for functional time series," Journal of Multivariate Analysis, Elsevier, vol. 174(C).

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bcb:wpaper:155. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Rodrigo Barbone Gonzalez (email available below). General contact details of provider: https://www.bcb.gov.br/en .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.