IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v187y2023ics0167947323001329.html
   My bibliography  Save this article

Conformal prediction bands for two-dimensional functional time series

Author

Listed:
  • Ajroldi, Niccolò
  • Diquigiovanni, Jacopo
  • Fontana, Matteo
  • Vantini, Simone

Abstract

Time evolving surfaces can be modeled as two-dimensional Functional time series, exploiting the tools of Functional data analysis. Leveraging this approach, a forecasting framework for such complex data is developed. The main focus revolves around Conformal Prediction, a versatile nonparametric paradigm used to quantify uncertainty in prediction problems. Building upon recent variations of Conformal Prediction for Functional time series, a probabilistic forecasting scheme for two-dimensional functional time series is presented, while providing an extension of Functional Autoregressive Processes of order one to this setting. Estimation techniques for the latter process are introduced, and their performance are compared in terms of the resulting prediction regions. Finally, the proposed forecasting procedure and the uncertainty quantification technique are applied to a real dataset, collecting daily observations of Sea Level Anomalies of the Black Sea.

Suggested Citation

  • Ajroldi, Niccolò & Diquigiovanni, Jacopo & Fontana, Matteo & Vantini, Simone, 2023. "Conformal prediction bands for two-dimensional functional time series," Computational Statistics & Data Analysis, Elsevier, vol. 187(C).
  • Handle: RePEc:eee:csdana:v:187:y:2023:i:c:s0167947323001329
    DOI: 10.1016/j.csda.2023.107821
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947323001329
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2023.107821?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Horváth, Lajos & Kokoszka, Piotr & Rice, Gregory, 2014. "Testing stationarity of functional time series," Journal of Econometrics, Elsevier, vol. 179(1), pages 66-82.
    2. Kargin, V. & Onatski, A., 2008. "Curve forecasting by functional autoregression," Journal of Multivariate Analysis, Elsevier, vol. 99(10), pages 2508-2526, November.
    3. Kath, Christopher & Ziel, Florian, 2021. "Conformal prediction interval estimation and applications to day-ahead and intraday power markets," International Journal of Forecasting, Elsevier, vol. 37(2), pages 777-799.
    4. Anestis Antoniadis & Efstathios Paparoditis & Theofanis Sapatinas, 2006. "A functional wavelet–kernel approach for time series prediction," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 68(5), pages 837-857, November.
    5. Gervini, Daniel, 2010. "Retracted: The functional singular value decomposition for bivariate stochastic processes," Computational Statistics & Data Analysis, Elsevier, vol. 54(10), pages 2358-2358, October.
    6. López-Pintado, Sara & Romo, Juan, 2009. "On the Concept of Depth for Functional Data," Journal of the American Statistical Association, American Statistical Association, vol. 104(486), pages 718-734.
    7. Victor Chernozhukov & Kaspar Wüthrich & Yinchu Zhu, 2018. "Exact and robust conformal inference methods for predictive machine learning with dependent data," CeMMAP working papers CWP16/18, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    8. Chiou, Jeng-Min & Yang, Ya-Fang & Chen, Yu-Ting, 2016. "Multivariate functional linear regression and prediction," Journal of Multivariate Analysis, Elsevier, vol. 146(C), pages 301-312.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Niccol`o Ajroldi & Jacopo Diquigiovanni & Matteo Fontana & Simone Vantini, 2022. "Conformal Prediction Bands for Two-Dimensional Functional Time Series," Papers 2207.13656, arXiv.org, revised Jul 2023.
    2. repec:cte:wsrepe:24606 is not listed on IDEAS
    3. Chen, Yichao & Pun, Chi Seng, 2019. "A bootstrap-based KPSS test for functional time series," Journal of Multivariate Analysis, Elsevier, vol. 174(C).
    4. Álvarez-Liébana, Javier & Bosq, Denis & Ruiz-Medina, María D., 2016. "Consistency of the plug-in functional predictor of the Ornstein–Uhlenbeck process in Hilbert and Banach spaces," Statistics & Probability Letters, Elsevier, vol. 117(C), pages 12-22.
    5. Haixu Wang & Jiguo Cao, 2023. "Nonlinear prediction of functional time series," Environmetrics, John Wiley & Sons, Ltd., vol. 34(5), August.
    6. Dominique Guégan & Matteo Iacopini, 2018. "Nonparameteric forecasting of multivariate probability density functions," Documents de travail du Centre d'Economie de la Sorbonne 18012, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
    7. Martínez-Hernández, Israel & Genton, Marc G. & González-Farías, Graciela, 2019. "Robust depth-based estimation of the functional autoregressive model," Computational Statistics & Data Analysis, Elsevier, vol. 131(C), pages 66-79.
    8. Han Lin Shang & Jiguo Cao & Peijun Sang, 2022. "Stopping time detection of wood panel compression: A functional time‐series approach," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(5), pages 1205-1224, November.
    9. Dean Fantazzini, 2024. "Adaptive Conformal Inference for Computing Market Risk Measures: An Analysis with Four Thousand Crypto-Assets," JRFM, MDPI, vol. 17(6), pages 1-44, June.
    10. Rice, Gregory & Wirjanto, Tony & Zhao, Yuqian, 2021. "Exploring volatility of crude oil intra-day return curves: a functional GARCH-X Model," MPRA Paper 109231, University Library of Munich, Germany.
    11. Kada Kloucha, Meryem & Mourid, Tahar, 2019. "Best linear predictor of a C[0,1]-valued functional autoregressive process," Statistics & Probability Letters, Elsevier, vol. 150(C), pages 114-120.
    12. Lee, Sangyeol & Meintanis, Simos G. & Pretorius, Charl, 2022. "Monitoring procedures for strict stationarity based on the multivariate characteristic function," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    13. Horváth, Lajos & Hušková, Marie & Rice, Gregory, 2013. "Test of independence for functional data," Journal of Multivariate Analysis, Elsevier, vol. 117(C), pages 100-119.
    14. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    15. Klepsch, J. & Klüppelberg, C., 2017. "An innovations algorithm for the prediction of functional linear processes," Journal of Multivariate Analysis, Elsevier, vol. 155(C), pages 252-271.
    16. Maciej Jagódka & Małgorzata Snarska, 2023. "Should We Continue EU Cohesion Policy? The Dilemma of Uneven Development of Polish Regions," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 165(3), pages 901-917, February.
    17. Characiejus, Vaidotas & Rice, Gregory, 2020. "A general white noise test based on kernel lag-window estimates of the spectral density operator," Econometrics and Statistics, Elsevier, vol. 13(C), pages 175-196.
    18. Horváth, Lajos & Liu, Zhenya & Rice, Gregory & Wang, Shixuan, 2020. "A functional time series analysis of forward curves derived from commodity futures," International Journal of Forecasting, Elsevier, vol. 36(2), pages 646-665.
    19. Klepsch, J. & Klüppelberg, C. & Wei, T., 2017. "Prediction of functional ARMA processes with an application to traffic data," Econometrics and Statistics, Elsevier, vol. 1(C), pages 128-149.
    20. Dominique Guegan & Matteo Iacopini, 2018. "Nonparametric forecasting of multivariate probability density functions," Post-Print halshs-01821815, HAL.
    21. Xu, Meng & Li, Jialiang & Chen, Ying, 2017. "Varying coefficient functional autoregressive model with application to the U.S. treasuries," Journal of Multivariate Analysis, Elsevier, vol. 159(C), pages 168-183.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:187:y:2023:i:c:s0167947323001329. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.