IDEAS home Printed from https://ideas.repec.org/r/eee/intfor/v33y2017i1p11-20.html
   My bibliography  Save this item

Quantile regression forecasts of inflation under model uncertainty

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Eric Ghysels & Leonardo Iania & Jonas Striaukas, 2018. "Quantile-based Inflation Risk Models," Working Paper Research 349, National Bank of Belgium.
  2. Andrea Carriero & Todd E. Clark & Marcellino Massimiliano, 2020. "Nowcasting Tail Risks to Economic Activity with Many Indicators," Working Papers 20-13R2, Federal Reserve Bank of Cleveland, revised 22 Sep 2020.
  3. Oğuzhan Çepni & Rangan Gupta & Mark E. Wohar, 2020. "The role of real estate uncertainty in predicting US home sales growth: evidence from a quantiles-based Bayesian model averaging approach," Applied Economics, Taylor & Francis Journals, vol. 52(5), pages 528-536, January.
  4. David Kohns & Tibor Szendrei, 2021. "Decoupling Shrinkage and Selection for the Bayesian Quantile Regression," Papers 2107.08498, arXiv.org.
  5. Dimitris Korobilis & Maximilian Schroder, 2023. "Monitoring multicountry macroeconomic risk," Papers 2305.09563, arXiv.org.
  6. Tony Chernis & Patrick J. Coe & Shaun P. Vahey, 2023. "Reassessing the dependence between economic growth and financial conditions since 1973," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 38(2), pages 260-267, March.
  7. Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2022. "Specification Choices in Quantile Regression for Empirical Macroeconomics," Working Papers 22-25, Federal Reserve Bank of Cleveland.
  8. Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2022. "Nowcasting tail risk to economic activity at a weekly frequency," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(5), pages 843-866, August.
  9. Xindi Wang & Zeshui Xu & Xinxin Wang & Marinko Skare, 2022. "A review of inflation from 1906 to 2022: a comprehensive analysis of inflation studies from a global perspective," Oeconomia Copernicana, Institute of Economic Research, vol. 13(3), pages 595-631, September.
  10. Pfarrhofer, Michael, 2022. "Modeling tail risks of inflation using unobserved component quantile regressions," Journal of Economic Dynamics and Control, Elsevier, vol. 143(C).
  11. Ferrara, Laurent & Mogliani, Matteo & Sahuc, Jean-Guillaume, 2022. "High-frequency monitoring of growth at risk," International Journal of Forecasting, Elsevier, vol. 38(2), pages 582-595.
  12. Theodore Panagiotidis & Georgios Papapanagiotou, 2024. "A note on the determinants of NFTs returns," Discussion Paper Series 2024_02, Department of Economics, University of Macedonia, revised Feb 2024.
  13. Dimitris Korobilis & Kenichi Shimizu, 2022. "Bayesian Approaches to Shrinkage and Sparse Estimation," Foundations and Trends(R) in Econometrics, now publishers, vol. 11(4), pages 230-354, June.
  14. Ignacio Garr'on & C. Vladimir Rodr'iguez-Caballero & Esther Ruiz, 2024. "International vulnerability of inflation," Papers 2410.20628, arXiv.org, revised Oct 2024.
  15. James Mitchell & Aubrey Poon & Dan Zhu, 2024. "Constructing density forecasts from quantile regressions: Multimodality in macrofinancial dynamics," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 39(5), pages 790-812, August.
  16. Nima Nonejad, 2021. "An Overview Of Dynamic Model Averaging Techniques In Time‐Series Econometrics," Journal of Economic Surveys, Wiley Blackwell, vol. 35(2), pages 566-614, April.
  17. Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2024. "Capturing Macro‐Economic Tail Risks with Bayesian Vector Autoregressions," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 56(5), pages 1099-1127, August.
  18. Panagiotidis, Theodore & Papapanagiotou, Georgios & Stengos, Thanasis, 2024. "A Bayesian approach for the determinants of bitcoin returns," International Review of Financial Analysis, Elsevier, vol. 91(C).
  19. Jiawen Luo & Tony Klein & Thomas Walther & Qiang Ji, 2024. "Forecasting realized volatility of crude oil futures prices based on machine learning," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(5), pages 1422-1446, August.
  20. Todd E. Clark & Florian Huber & Gary Koop & Massimiliano Marcellino & Michael Pfarrhofer, 2024. "Investigating Growth-at-Risk Using a Multicountry Nonparametric Quantile Factor Model," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 42(4), pages 1302-1317, October.
  21. Macias, Paweł & Stelmasiak, Damian & Szafranek, Karol, 2023. "Nowcasting food inflation with a massive amount of online prices," International Journal of Forecasting, Elsevier, vol. 39(2), pages 809-826.
  22. Yunyun Wang & Tatsushi Oka & Dan Zhu, 2024. "Inflation Target at Risk: A Time-varying Parameter Distributional Regression," Papers 2403.12456, arXiv.org.
  23. Niango Ange Joseph Yapi, 2020. "Exchange rate predictive densities and currency risks: A quantile regression approach," EconomiX Working Papers 2020-16, University of Paris Nanterre, EconomiX.
  24. Korobilis, Dimitris & Landau, Bettina & Musso, Alberto & Phella, Anthoulla, 2021. "The time-varying evolution of inflation risks," Working Paper Series 2600, European Central Bank.
  25. Todd E. Clark & Florian Huber & Gary Koop & Massimiliano Marcellino & Michael Pfarrhofer, 2023. "Tail Forecasting With Multivariate Bayesian Additive Regression Trees," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 64(3), pages 979-1022, August.
  26. Chalmovianský, Jakub & Porqueddu, Mario & Sokol, Andrej, 2020. "Weigh(t)ing the basket: aggregate and component-based inflation forecasts for the euro area," Working Paper Series 2501, European Central Bank.
  27. S. Béreau & V. Faubert & K. Schmidt, 2018. "Explaining and Forecasting Euro Area Inflation: the Role of Domestic and Global Factors," Working papers 663, Banque de France.
  28. Stella W. Self & Christopher S. McMahan & Brook T. Russell, 2021. "Identifying meteorological drivers of PM2.5 levels via a Bayesian spatial quantile regression," Environmetrics, John Wiley & Sons, Ltd., vol. 32(5), August.
  29. Oğuzhan Çepni & Rangan Gupta & Mark E. Wohar, 2021. "Variants of consumption‐wealth ratios and predictability of U.S. government bond risk premia," International Review of Finance, International Review of Finance Ltd., vol. 21(2), pages 661-674, June.
  30. David Kohns & Tibor Szendrei, 2020. "Horseshoe Prior Bayesian Quantile Regression," Papers 2006.07655, arXiv.org, revised Mar 2021.
  31. Garrón Vedia, Ignacio & Rodríguez Caballero, Carlos Vladimir & Ruiz Ortega, Esther, 2024. "International vulnerability of inflation," DES - Working Papers. Statistics and Econometrics. WS 44814, Universidad Carlos III de Madrid. Departamento de Estadística.
  32. Matteo Mogliani & Florens Odendahl, 2024. "Density forecast transformations," Papers 2412.06092, arXiv.org.
  33. Fernando Eguren-Martin & Andrej Sokol, 2022. "Attention to the Tail(s): Global Financial Conditions and Exchange Rate Risks," IMF Economic Review, Palgrave Macmillan;International Monetary Fund, vol. 70(3), pages 487-519, September.
  34. Dimitris Korobilis & Maximilian Schroder, 2022. "Probabilistic Quantile Factor Analysis," Papers 2212.10301, arXiv.org, revised Aug 2024.
  35. Bampinas, Georgios & Panagiotidis, Theodore & Papapanagiotou, Georgios, 2023. "Oil shocks and investor attention," The Quarterly Review of Economics and Finance, Elsevier, vol. 87(C), pages 68-81.
  36. Stolbov, Mikhail & Shchepeleva, Maria, 2022. "Modeling global real economic activity: Evidence from variable selection across quantiles," The Journal of Economic Asymmetries, Elsevier, vol. 25(C).
  37. Philippe Goulet Coulombe & Karin Klieber & Christophe Barrette & Maximilian Goebel, 2024. "Maximally Forward-Looking Core Inflation," Papers 2404.05209, arXiv.org.
  38. Bo Zeng & Shuliang Li & Wei Meng & Dehai Zhang, 2019. "An improved gray prediction model for China’s beef consumption forecasting," PLOS ONE, Public Library of Science, vol. 14(9), pages 1-18, September.
  39. J. David López-Salido & Francesca Loria, 2020. "Inflation at Risk," Finance and Economics Discussion Series 2020-013, Board of Governors of the Federal Reserve System (U.S.).
  40. Milan Szabo, 2020. "Growth-at-Risk: Bayesian Approach," Working Papers 2020/3, Czech National Bank.
  41. Dai, Hongyan & Xiao, Qin & Chen, Songlin & Zhou, Weihua, 2023. "Data-driven demand forecast for O2O operations: An adaptive hierarchical incremental approach," International Journal of Production Economics, Elsevier, vol. 259(C).
  42. Sokol, Andrej, 2021. "Fan charts 2.0: flexible forecast distributions with expert judgement," Working Paper Series 2624, European Central Bank.
  43. Marian Vavra, 2023. "Bias-Correction in Time Series Quantile Regression Models," Working and Discussion Papers WP 3/2023, Research Department, National Bank of Slovakia.
  44. Oguzhan Cepni & Rangan Gupta & Mark E. Wohar, 2019. "Variants of Consumption-Wealth Ratios and Predictability of U.S. Government Bond Risk Premia: Old is still Gold," Working Papers 201912, University of Pretoria, Department of Economics.
  45. Laurent Ferrara & Joseph Yapi, 2022. "Measuring exchange rate risks during periods of uncertainty," International Economics, CEPII research center, issue 170, pages 202-212.
  46. López-Salido, J David & Loria, Francesca, 2019. "Inflation at Risk," CEPR Discussion Papers 14074, C.E.P.R. Discussion Papers.
  47. Gupta, Rangan & Ji, Qiang & Pierdzioch, Christian & Plakandaras, Vasilios, 2023. "Forecasting the conditional distribution of realized volatility of oil price returns: The role of skewness over 1859 to 2023," Finance Research Letters, Elsevier, vol. 58(PC).
  48. López-Salido, David & Loria, Francesca, 2024. "Inflation at risk," Journal of Monetary Economics, Elsevier, vol. 145(S).
  49. Vegard Høghaug Larsen & Nicolò Maffei-Faccioli & Laura Pagenhardt, 2023. "Where do they care? The ECB in the media and inflation expectations," Working Papers No 04/2023, Centre for Applied Macro- and Petroleum economics (CAMP), BI Norwegian Business School.
  50. James Mitchell & Saeed Zaman, 2023. "The Distributional Predictive Content of Measures of Inflation Expectations," Working Papers 23-31, Federal Reserve Bank of Cleveland.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.