IDEAS home Printed from https://ideas.repec.org/a/wly/envmet/v32y2021i5ne2669.html
   My bibliography  Save this article

Identifying meteorological drivers of PM2.5 levels via a Bayesian spatial quantile regression

Author

Listed:
  • Stella W. Self
  • Christopher S. McMahan
  • Brook T. Russell

Abstract

Recently, due to accelerations in urban and industrial development, the health impact of air pollution has become a topic of key concern. Of the various forms of air pollution, fine atmospheric particulate matter (PM2.5; particles less than 2.5 micrometers in diameter) appears to pose the greatest risk to human health. While even moderate levels of PM2.5 can be detrimental to health, spikes in PM2.5 to atypically high levels are even more dangerous. These spikes are believed to be associated with regionally specific meteorological factors. To quantify these associations, we develop a Bayesian spatiotemporal quantile regression model to estimate the spatially varying effects of meteorological variables purported to be related to PM2.5 levels. By adopting a quantile regression model, we are able to examine the entire distribution of PM2.5 levels; for example, we are able to identify which meteorological drivers are related to abnormally high PM2.5 levels. Our approach uses penalized splines to model the spatially varying meteorological effects and to account for spatiotemporal dependence. The performance of the methodology is evaluated through extensive numerical studies. We apply our modeling techniques to 5 years of daily PM2.5 data collected throughout the eastern United States to reveal the effects of various meteorological drivers.

Suggested Citation

  • Stella W. Self & Christopher S. McMahan & Brook T. Russell, 2021. "Identifying meteorological drivers of PM2.5 levels via a Bayesian spatial quantile regression," Environmetrics, John Wiley & Sons, Ltd., vol. 32(5), August.
  • Handle: RePEc:wly:envmet:v:32:y:2021:i:5:n:e2669
    DOI: 10.1002/env.2669
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/env.2669
    Download Restriction: no

    File URL: https://libkey.io/10.1002/env.2669?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Brook T. Russell & Dewei Wang & Christopher S. McMahan, 2017. "Spatially modeling the effects of meteorological drivers of PM2.5 in the Eastern United States via a local linear penalized quantile regression estimator," Environmetrics, John Wiley & Sons, Ltd., vol. 28(5), August.
    2. Howard D. Bondell & Brian J. Reich & Huixia Wang, 2010. "Noncrossing quantile regression curve estimation," Biometrika, Biometrika Trust, vol. 97(4), pages 825-838.
    3. Koenker, Roger W & Bassett, Gilbert, Jr, 1978. "Regression Quantiles," Econometrica, Econometric Society, vol. 46(1), pages 33-50, January.
    4. Korobilis, Dimitris, 2017. "Quantile regression forecasts of inflation under model uncertainty," International Journal of Forecasting, Elsevier, vol. 33(1), pages 11-20.
    5. Yu, Keming & Moyeed, Rana A., 2001. "Bayesian quantile regression," Statistics & Probability Letters, Elsevier, vol. 54(4), pages 437-447, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Eric Yanchenko & Howard D. Bondell & Brian J. Reich, 2024. "Spatial regression modeling via the R2D2 framework," Environmetrics, John Wiley & Sons, Ltd., vol. 35(2), March.
    2. Silius M. Vandeskog & Thordis L. Thorarinsdottir & Ingelin Steinsland & Finn Lindgren, 2022. "Quantile based modeling of diurnal temperature range with the five‐parameter lambda distribution," Environmetrics, John Wiley & Sons, Ltd., vol. 33(4), June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Luke B. Smith & Brian J. Reich & Amy H. Herring & Peter H. Langlois & Montserrat Fuentes, 2015. "Multilevel quantile function modeling with application to birth outcomes," Biometrics, The International Biometric Society, vol. 71(2), pages 508-519, June.
    2. Pfarrhofer, Michael, 2022. "Modeling tail risks of inflation using unobserved component quantile regressions," Journal of Economic Dynamics and Control, Elsevier, vol. 143(C).
    3. Weihua Zhao & Jianbo Li & Heng Lian, 2018. "Adaptive varying-coefficient linear quantile model: a profiled estimating equations approach," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 70(3), pages 553-582, June.
    4. Yun Yang & Surya T. Tokdar, 2017. "Joint Estimation of Quantile Planes Over Arbitrary Predictor Spaces," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(519), pages 1107-1120, July.
    5. Kneib, Thomas & Silbersdorff, Alexander & Säfken, Benjamin, 2023. "Rage Against the Mean – A Review of Distributional Regression Approaches," Econometrics and Statistics, Elsevier, vol. 26(C), pages 99-123.
    6. Ferrara, Laurent & Mogliani, Matteo & Sahuc, Jean-Guillaume, 2022. "High-frequency monitoring of growth at risk," International Journal of Forecasting, Elsevier, vol. 38(2), pages 582-595.
    7. Das, Priyam & Ghosal, Subhashis, 2017. "Bayesian quantile regression using random B-spline series prior," Computational Statistics & Data Analysis, Elsevier, vol. 109(C), pages 121-143.
    8. Das, Priyam & Ghosal, Subhashis, 2018. "Bayesian non-parametric simultaneous quantile regression for complete and grid data," Computational Statistics & Data Analysis, Elsevier, vol. 127(C), pages 172-186.
    9. David Kohns & Tibor Szendrei, 2020. "Horseshoe Prior Bayesian Quantile Regression," Papers 2006.07655, arXiv.org, revised Mar 2021.
    10. Rodrigues, T. & Dortet-Bernadet, J.-L. & Fan, Y., 2019. "Simultaneous fitting of Bayesian penalised quantile splines," Computational Statistics & Data Analysis, Elsevier, vol. 134(C), pages 93-109.
    11. Angela Noufaily & M. C. Jones, 2013. "Parametric quantile regression based on the generalized gamma distribution," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 62(5), pages 723-740, November.
    12. Akosah, Nana Kwame & Alagidede, Imhotep Paul & Schaling, Eric, 2020. "Testing for asymmetry in monetary policy rule for small-open developing economies: Multiscale Bayesian quantile evidence from Ghana," The Journal of Economic Asymmetries, Elsevier, vol. 22(C).
    13. Paul Hewson & Keming Yu, 2008. "Quantile regression for binary performance indicators," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 24(5), pages 401-418, September.
    14. Otto-Sobotka, Fabian & Salvati, Nicola & Ranalli, Maria Giovanna & Kneib, Thomas, 2019. "Adaptive semiparametric M-quantile regression," Econometrics and Statistics, Elsevier, vol. 11(C), pages 116-129.
    15. Hemant Kulkarni & Jayabrata Biswas & Kiranmoy Das, 2019. "A joint quantile regression model for multiple longitudinal outcomes," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 103(4), pages 453-473, December.
    16. Chuliá, Helena & Garrón, Ignacio & Uribe, Jorge M., 2024. "Daily growth at risk: Financial or real drivers? The answer is not always the same," International Journal of Forecasting, Elsevier, vol. 40(2), pages 762-776.
    17. Tsionas, Mike G., 2020. "Quantile Stochastic Frontiers," European Journal of Operational Research, Elsevier, vol. 282(3), pages 1177-1184.
    18. Cliff J. Huang & Tsu-Tan Fu & Hung-Pin Lai & Yung-Lieh Yang, 2017. "Semiparametric smooth coefficient quantile estimation of the production profile," Empirical Economics, Springer, vol. 52(1), pages 373-392, February.
    19. Anne M. Lausier & Shaleen Jain, 2018. "Diversity in global patterns of observed precipitation variability and change on river basin scales," Climatic Change, Springer, vol. 149(2), pages 261-275, July.
    20. Iacopini, Matteo & Poon, Aubrey & Rossini, Luca & Zhu, Dan, 2023. "Bayesian mixed-frequency quantile vector autoregression: Eliciting tail risks of monthly US GDP," Journal of Economic Dynamics and Control, Elsevier, vol. 157(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:envmet:v:32:y:2021:i:5:n:e2669. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.interscience.wiley.com/jpages/1180-4009/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.