IDEAS home Printed from https://ideas.repec.org/r/eee/intfor/v32y2016i1p1-9.html
   My bibliography  Save this item

Forecasting crude oil market volatility: A Markov switching multifractal volatility approach

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Lux, Thomas & Segnon, Mawuli & Gupta, Rangan, 2016. "Forecasting crude oil price volatility and value-at-risk: Evidence from historical and recent data," Energy Economics, Elsevier, vol. 56(C), pages 117-133.
  2. Chai, Jian & Lu, Quanying & Hu, Yi & Wang, Shouyang & Lai, Kin Keung & Liu, Hongtao, 2018. "Analysis and Bayes statistical probability inference of crude oil price change point," Technological Forecasting and Social Change, Elsevier, vol. 126(C), pages 271-283.
  3. Zhao, Yang & Li, Jianping & Yu, Lean, 2017. "A deep learning ensemble approach for crude oil price forecasting," Energy Economics, Elsevier, vol. 66(C), pages 9-16.
  4. Wang, Yudong & Hao, Xianfeng, 2022. "Forecasting the real prices of crude oil: A robust weighted least squares approach," Energy Economics, Elsevier, vol. 116(C).
  5. Zhang, Yue-Jun & Yao, Ting & He, Ling-Yun & Ripple, Ronald, 2019. "Volatility forecasting of crude oil market: Can the regime switching GARCH model beat the single-regime GARCH models?," International Review of Economics & Finance, Elsevier, vol. 59(C), pages 302-317.
  6. Li, Jingjing & Tang, Ling & Wang, Shouyang, 2020. "Forecasting crude oil price with multilingual search engine data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 551(C).
  7. Zavadska, Miroslava & Morales, Lucía & Coughlan, Joseph, 2020. "Brent crude oil prices volatility during major crises," Finance Research Letters, Elsevier, vol. 32(C).
  8. Xin-Lan Fu & Xing-Lu Gao & Zheng Shan & Zhi-Qiang Jiang & Wei-Xing Zhou, 2018. "Multifractal characteristics and return predictability in the Chinese stock markets," Papers 1806.07604, arXiv.org.
  9. Mawuli Segnon & Stelios Bekiros & Bernd Wilfling, 2018. "Forecasting Inflation Uncertainty in the G7 Countries," Econometrics, MDPI, vol. 6(2), pages 1-25, April.
  10. Fernandes, Leonardo H.S. & de Araújo, Fernando H.A. & Silva, Igor E.M., 2020. "The (in)efficiency of NYMEX energy futures: A multifractal analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 556(C).
  11. Hyeon-Seok Kim & Hui-Sang Kim & Sun-Yong Choi, 2024. "Investigating the Impact of Agricultural, Financial, Economic, and Political Factors on Oil Forward Prices and Volatility: A SHAP Analysis," Energies, MDPI, vol. 17(5), pages 1-24, February.
  12. Luo, Jiawen & Ji, Qiang & Klein, Tony & Todorova, Neda & Zhang, Dayong, 2020. "On realized volatility of crude oil futures markets: Forecasting with exogenous predictors under structural breaks," Energy Economics, Elsevier, vol. 89(C).
  13. Liu, Yue & Sun, Huaping & Zhang, Jijian & Taghizadeh-Hesary, Farhad, 2020. "Detection of volatility regime-switching for crude oil price modeling and forecasting," Resources Policy, Elsevier, vol. 69(C).
  14. Chao Liang & Yaojie Zhang & Xiafei Li & Feng Ma, 2022. "Which predictor is more predictive for Bitcoin volatility? And why?," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(2), pages 1947-1961, April.
  15. Wang, Lu & Ma, Feng & Liu, Jing & Yang, Lin, 2020. "Forecasting stock price volatility: New evidence from the GARCH-MIDAS model," International Journal of Forecasting, Elsevier, vol. 36(2), pages 684-694.
  16. Xu Gong & Boqiang Lin, 2018. "Structural breaks and volatility forecasting in the copper futures market," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 38(3), pages 290-339, March.
  17. He, Huizi & Sun, Mei & Li, Xiuming & Mensah, Isaac Adjei, 2022. "A novel crude oil price trend prediction method: Machine learning classification algorithm based on multi-modal data features," Energy, Elsevier, vol. 244(PA).
  18. Hasanov, Akram Shavkatovich & Shaiban, Mohammed Sharaf & Al-Freedi, Ajab, 2020. "Forecasting volatility in the petroleum futures markets: A re-examination and extension," Energy Economics, Elsevier, vol. 86(C).
  19. Demirer, Riza & Gupta, Rangan & Pierdzioch, Christian & Shahzad, Syed Jawad Hussain, 2020. "The predictive power of oil price shocks on realized volatility of oil: A note," Resources Policy, Elsevier, vol. 69(C).
  20. Guo, Jingjun & Zhao, Zhengling & Sun, Jingyun & Sun, Shaolong, 2022. "Multi-perspective crude oil price forecasting with a new decomposition-ensemble framework," Resources Policy, Elsevier, vol. 77(C).
  21. Cheng, Fangzheng & Fan, Tijun & Fan, Dandan & Li, Shanling, 2018. "The prediction of oil price turning points with log-periodic power law and multi-population genetic algorithm," Energy Economics, Elsevier, vol. 72(C), pages 341-355.
  22. Wang, Jue & Zhou, Hao & Hong, Tao & Li, Xiang & Wang, Shouyang, 2020. "A multi-granularity heterogeneous combination approach to crude oil price forecasting," Energy Economics, Elsevier, vol. 91(C).
  23. Zhang, Yaojie & He, Mengxi & Wang, Yudong & Liang, Chao, 2023. "Global economic policy uncertainty aligned: An informative predictor for crude oil market volatility," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1318-1332.
  24. Chen, Zhonglu & Ye, Yong & Li, Xiafei, 2022. "Forecasting China's crude oil futures volatility: New evidence from the MIDAS-RV model and COVID-19 pandemic," Resources Policy, Elsevier, vol. 75(C).
  25. Tarek Bouazizi & Mongi Lassoued & Zouhaier Hadhek, 2021. "Oil Price Volatility Models during Coronavirus Crisis: Testing with Appropriate Models Using Further Univariate GARCH and Monte Carlo Simulation Models," International Journal of Energy Economics and Policy, Econjournals, vol. 11(1), pages 281-292.
  26. Chai, Jian & Xing, Li-Min & Zhou, Xiao-Yang & Zhang, Zhe George & Li, Jie-Xun, 2018. "Forecasting the WTI crude oil price by a hybrid-refined method," Energy Economics, Elsevier, vol. 71(C), pages 114-127.
  27. Wang, Jiqian & He, Xiaofeng & Ma, Feng & Li, Pan, 2022. "Uncertainty and oil volatility: Evidence from shrinkage method," Resources Policy, Elsevier, vol. 75(C).
  28. Sabet, Amir H. & Heaney, Richard, 2016. "An event study analysis of oil and gas firm acreage and reserve acquisitions," Energy Economics, Elsevier, vol. 57(C), pages 215-227.
  29. Ayben Koy, 2022. "Regime Switching Mechanism during Energy Futures Price Bubbles," International Journal of Energy Economics and Policy, Econjournals, vol. 12(1), pages 373-382.
  30. Markus Vogl, 2022. "Quantitative modelling frontiers: a literature review on the evolution in financial and risk modelling after the financial crisis (2008–2019)," SN Business & Economics, Springer, vol. 2(12), pages 1-69, December.
  31. Charles, Amélie & Darné, Olivier, 2017. "Forecasting crude-oil market volatility: Further evidence with jumps," Energy Economics, Elsevier, vol. 67(C), pages 508-519.
  32. da Silva Filho, Antônio Carlos & Maganini, Natália Diniz & de Almeida, Eduardo Fonseca, 2018. "Multifractal analysis of Bitcoin market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 954-967.
  33. Lyócsa, Štefan & Todorova, Neda, 2021. "What drives volatility of the U.S. oil and gas firms?," Energy Economics, Elsevier, vol. 100(C).
  34. Lu, Xinjie & Ma, Feng & Wang, Tianyang & Wen, Fenghua, 2023. "International stock market volatility: A data-rich environment based on oil shocks," Journal of Economic Behavior & Organization, Elsevier, vol. 214(C), pages 184-215.
  35. Yi, Yongsheng & He, Mengxi & Zhang, Yaojie, 2022. "Out-of-sample prediction of Bitcoin realized volatility: Do other cryptocurrencies help?," The North American Journal of Economics and Finance, Elsevier, vol. 62(C).
  36. Pan, Zhiyuan & Wang, Yudong & Wu, Chongfeng & Yin, Libo, 2017. "Oil price volatility and macroeconomic fundamentals: A regime switching GARCH-MIDAS model," Journal of Empirical Finance, Elsevier, vol. 43(C), pages 130-142.
  37. Hong, Yanran & Wang, Lu & Liang, Chao & Umar, Muhammad, 2022. "Impact of financial instability on international crude oil volatility: New sight from a regime-switching framework," Resources Policy, Elsevier, vol. 77(C).
  38. Xu Gong & Boqiang Lin, 2021. "Effects of structural changes on the prediction of downside volatility in futures markets," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 41(7), pages 1124-1153, July.
  39. Segnon Mawuli & Lau Chi Keung & Wilfling Bernd & Gupta Rangan, 2022. "Are multifractal processes suited to forecasting electricity price volatility? Evidence from Australian intraday data," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 26(1), pages 73-98, February.
  40. Cristina Sattarhoff & Marc Gronwald, 2018. "How to Measure Financial Market Efficiency? A Multifractality-Based Quantitative Approach with an Application to the European Carbon Market," CESifo Working Paper Series 7102, CESifo.
  41. Catalin Popescu & Sorin Alexandru Gheorghiu, 2021. "Economic Analysis and Generic Algorithm for Optimizing the Investments Decision-Making Process in Oil Field Development," Energies, MDPI, vol. 14(19), pages 1-24, September.
  42. Salami, Monsurat Ayojimi & Tanrıvermiş, Harun & Tanrıvermiş, Yesim, 2024. "Influence of Ukraine invasion by Russia on Turkish markets," The Journal of Economic Asymmetries, Elsevier, vol. 29(C).
  43. Zhang, Yue-Jun & Ma, Shu-Jiao, 2019. "How to effectively estimate the time-varying risk spillover between crude oil and stock markets? Evidence from the expectile perspective," Energy Economics, Elsevier, vol. 84(C).
  44. Libo Yin, 2022. "The role of intermediary capital risk in predicting oil volatility," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(1), pages 401-416, January.
  45. Lu, Quanying & Li, Yuze & Chai, Jian & Wang, Shouyang, 2020. "Crude oil price analysis and forecasting: A perspective of “new triangle”," Energy Economics, Elsevier, vol. 87(C).
  46. Jiang, He & Hu, Weiqiang & Xiao, Ling & Dong, Yao, 2022. "A decomposition ensemble based deep learning approach for crude oil price forecasting," Resources Policy, Elsevier, vol. 78(C).
  47. Miroslava Zavadska & Lucía Morales & Joseph Coughlan, 2018. "The Lead–Lag Relationship between Oil Futures and Spot Prices—A Literature Review," IJFS, MDPI, vol. 6(4), pages 1-22, October.
  48. Huang, Yumeng & Dai, Xingyu & Wang, Qunwei & Zhou, Dequn, 2021. "A hybrid model for carbon price forecastingusing GARCH and long short-term memory network," Applied Energy, Elsevier, vol. 285(C).
  49. Liang, Chao & Li, Yan & Ma, Feng & Wei, Yu, 2021. "Global equity market volatilities forecasting: A comparison of leverage effects, jumps, and overnight information," International Review of Financial Analysis, Elsevier, vol. 75(C).
  50. Dondukova Oyuna & Liu Yaobin, 2021. "Forecasting the Crude Oil Prices Volatility With Stochastic Volatility Models," SAGE Open, , vol. 11(3), pages 21582440211, July.
  51. Yan, Zichun & Tian, Fangzhu & Sun, Yuying & Wang, Shouyang, 2024. "A time-frequency-based interval decomposition ensemble method for forecasting gasoil prices under the trend of low-carbon development," Energy Economics, Elsevier, vol. 134(C).
  52. Xinjie Lu & Feng Ma & Jiqian Wang & Jing Liu, 2022. "Forecasting oil futures realized range‐based volatility with jumps, leverage effect, and regime switching: New evidence from MIDAS models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(4), pages 853-868, July.
  53. Li, Xiafei & Liang, Chao & Chen, Zhonglu & Umar, Muhammad, 2022. "Forecasting crude oil volatility with uncertainty indicators: New evidence," Energy Economics, Elsevier, vol. 108(C).
  54. Yuqing Feng & Yaojie Zhang & Yudong Wang, 2024. "Out‐of‐sample volatility prediction: Rolling window, expanding window, or both?," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(3), pages 567-582, April.
  55. Stavroula P. Fameliti & Vasiliki D. Skintzi, 2020. "Predictive ability and economic gains from volatility forecast combinations," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(2), pages 200-219, March.
  56. Haowen Bao & Yongmiao Hong & Yuying Sun & Shouyang Wang, 2024. "Sparse Interval-valued Time Series Modeling with Machine Learning," Papers 2411.09452, arXiv.org.
  57. Xu Gong & Boqiang Lin, 2022. "Predicting the volatility of crude oil futures: The roles of leverage effects and structural changes," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(1), pages 610-640, January.
  58. Herrera, Ana María & Hu, Liang & Pastor, Daniel, 2018. "Forecasting crude oil price volatility," International Journal of Forecasting, Elsevier, vol. 34(4), pages 622-635.
  59. Pablo Cansado-Bravo & Carlos Rodríguez-Monroy, 2018. "Persistence of Oil Prices in Gas Import Prices and the Resilience of the Oil-Indexation Mechanism. The Case of Spanish Gas Import Prices," Energies, MDPI, vol. 11(12), pages 1-17, December.
  60. Nima Nonejad, 2020. "A detailed look at crude oil price volatility prediction using macroeconomic variables," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(7), pages 1119-1141, November.
  61. Zhaojie Luo & Xiaojing Cai & Katsuyuki Tanaka & Tetsuya Takiguchi & Takuji Kinkyo & Shigeyuki Hamori, 2019. "Can We Forecast Daily Oil Futures Prices? Experimental Evidence from Convolutional Neural Networks," JRFM, MDPI, vol. 12(1), pages 1-13, January.
  62. Lang, Korbinian & Auer, Benjamin R., 2020. "The economic and financial properties of crude oil: A review," The North American Journal of Economics and Finance, Elsevier, vol. 52(C).
  63. Wang, Lu & Ma, Feng & Hao, Jianyang & Gao, Xinxin, 2021. "Forecasting crude oil volatility with geopolitical risk: Do time-varying switching probabilities play a role?," International Review of Financial Analysis, Elsevier, vol. 76(C).
  64. Martina Assereto & Julie Byrne, 2020. "The Implications of Policy Uncertainty on Solar Photovoltaic Investment," Energies, MDPI, vol. 13(23), pages 1-20, November.
  65. Fan, Liwei & Pan, Sijia & Li, Zimin & Li, Huiping, 2016. "An ICA-based support vector regression scheme for forecasting crude oil prices," Technological Forecasting and Social Change, Elsevier, vol. 112(C), pages 245-253.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.