IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i5p1001-d1342719.html
   My bibliography  Save this article

Investigating the Impact of Agricultural, Financial, Economic, and Political Factors on Oil Forward Prices and Volatility: A SHAP Analysis

Author

Listed:
  • Hyeon-Seok Kim

    (Department of Industrial Management Engineering, Gachon University, Seongnam-si 13120, Republic of Korea)

  • Hui-Sang Kim

    (Department of Financial Mathematics, Gachon University, Seongnam-si 13120, Republic of Korea)

  • Sun-Yong Choi

    (Department of Financial Mathematics, Gachon University, Seongnam-si 13120, Republic of Korea)

Abstract

Accurately forecasting crude oil prices is crucial due to its vital role in the industrial economy. In this study, we explored the multifaceted impact of various financial, economic, and political factors on the forecasting of crude oil forward prices and volatility. We used various machine learning models to forecast oil forward prices and volatility based on their superior predictive power. Furthermore, we employed the SHAP framework to analyze individual features to identify their contributions in terms of the prediction. According to our findings, factors contributing to oil forward prices and volatility can be summarized into four key focal outcomes. First, it was confirmed that soybean forward pricing overwhelmingly contributes to oil forward pricing predictions. Second, the SSEC is the second-largest contributor to oil forward pricing predictions, surpassing the contributions of the S&P 500 or oil volatility. Third, the contribution of oil forward prices is the highest in predicting oil volatility. Lastly, the contribution of the DXY significantly influences both oil forward price and volatility predictions, with a particularly notable impact on oil volatility predictions. In summary, through the SHAP framework, we identified that soybean forward prices, the SSEC, oil volatility, and the DXY are the primary contributors to oil forward price predictions, while oil forward prices, the S&P 500, and the DXY are the main contributors to oil volatility predictions. These research findings provide valuable insights into the most-influential factors for predicting oil forward prices and oil volatility, laying the foundation for informed investment decisions and robust risk-management strategies.

Suggested Citation

  • Hyeon-Seok Kim & Hui-Sang Kim & Sun-Yong Choi, 2024. "Investigating the Impact of Agricultural, Financial, Economic, and Political Factors on Oil Forward Prices and Volatility: A SHAP Analysis," Energies, MDPI, vol. 17(5), pages 1-24, February.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:5:p:1001-:d:1342719
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/5/1001/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/5/1001/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hamilton, James D., 1996. "This is what happened to the oil price-macroeconomy relationship," Journal of Monetary Economics, Elsevier, vol. 38(2), pages 215-220, October.
    2. Kristoufek, Ladislav, 2014. "Leverage effect in energy futures," Energy Economics, Elsevier, vol. 45(C), pages 1-9.
    3. Anthony Paris, 2018. "On the link between oil and agricultural commodity prices: Do biofuels matter?," International Economics, CEPII research center, issue 155, pages 48-60.
    4. Mei, Dexiang & Ma, Feng & Liao, Yin & Wang, Lu, 2020. "Geopolitical risk uncertainty and oil future volatility: Evidence from MIDAS models," Energy Economics, Elsevier, vol. 86(C).
    5. Baffes, John, 2007. "Oil spills on other commodities," Resources Policy, Elsevier, vol. 32(3), pages 126-134, September.
    6. Wen, Fenghua & Gong, Xu & Cai, Shenghua, 2016. "Forecasting the volatility of crude oil futures using HAR-type models with structural breaks," Energy Economics, Elsevier, vol. 59(C), pages 400-413.
    7. Ding, Haoyuan & Kim, Hyung-Gun & Park, Sung Y., 2016. "Crude oil and stock markets: Causal relationships in tails?," Energy Economics, Elsevier, vol. 59(C), pages 58-69.
    8. Feng, Yanxiao & Duan, Qiuhua & Chen, Xi & Yakkali, Sai Santosh & Wang, Julian, 2021. "Space cooling energy usage prediction based on utility data for residential buildings using machine learning methods," Applied Energy, Elsevier, vol. 291(C).
    9. Lutz Kilian & Cheolbeom Park, 2009. "The Impact Of Oil Price Shocks On The U.S. Stock Market," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 50(4), pages 1267-1287, November.
    10. Gert Peersman & Ine van Robays, 2009. "Oil and the Euro area economy [Labour market implications of EU product market integration]," Economic Policy, CEPR, CESifo, Sciences Po;CES;MSH, vol. 24(60), pages 603-651.
    11. Stavros Degiannakis & George Filis & Vipin Arora, 2018. "Oil Prices and Stock Markets: A Review of the Theory and Empirical Evidence," The Energy Journal, , vol. 39(5), pages 85-130, September.
    12. Broadstock, David C. & Wang, Rui & Zhang, Dayong, 2014. "Direct and indirect oil shocks and their impacts upon energy related stocks," Economic Systems, Elsevier, vol. 38(3), pages 451-467.
    13. Lutz Kilian, 2009. "Not All Oil Price Shocks Are Alike: Disentangling Demand and Supply Shocks in the Crude Oil Market," American Economic Review, American Economic Association, vol. 99(3), pages 1053-1069, June.
    14. Stef, Nicolae & Başağaoğlu, Hakan & Chakraborty, Debaditya & Ben Jabeur, Sami, 2023. "Does institutional quality affect CO2 emissions? Evidence from explainable artificial intelligence models," Energy Economics, Elsevier, vol. 124(C).
    15. Chen, Yanhui & Zhang, Chuan & He, Kaijian & Zheng, Aibing, 2018. "Multi-step-ahead crude oil price forecasting using a hybrid grey wave model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 501(C), pages 98-110.
    16. Jones, Charles M & Kaul, Gautam, 1996. "Oil and the Stock Markets," Journal of Finance, American Finance Association, vol. 51(2), pages 463-491, June.
    17. He, Mengxi & Zhang, Yaojie, 2022. "Climate policy uncertainty and the stock return predictability of the oil industry," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 81(C).
    18. Zhou, Deheng & Siddik, Abu Bakkar & Guo, Lili & Li, Houjian, 2023. "Dynamic relationship among climate policy uncertainty, oil price and renewable energy consumption—findings from TVP-SV-VAR approach," Renewable Energy, Elsevier, vol. 204(C), pages 722-732.
    19. Chen, Shiu-Sheng & Hsu, Kai-Wei, 2012. "Reverse globalization: Does high oil price volatility discourage international trade?," Energy Economics, Elsevier, vol. 34(5), pages 1634-1643.
    20. Ilyas, Muhammad & Khan, Aamir & Nadeem, Muhammad & Suleman, Muhammad Tahir, 2021. "Economic policy uncertainty, oil price shocks and corporate investment: Evidence from the oil industry," Energy Economics, Elsevier, vol. 97(C).
    21. Wu, Yu-Xi & Wu, Qing-Biao & Zhu, Jia-Qi, 2019. "Improved EEMD-based crude oil price forecasting using LSTM networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 516(C), pages 114-124.
    22. Hassouneh, Islam & Serra, Teresa & Goodwin, Barry K. & Gil, José M., 2012. "Non-parametric and parametric modeling of biodiesel, sunflower oil, and crude oil price relationships," Energy Economics, Elsevier, vol. 34(5), pages 1507-1513.
    23. Wang, Yudong & Wu, Chongfeng & Yang, Li, 2016. "Forecasting crude oil market volatility: A Markov switching multifractal volatility approach," International Journal of Forecasting, Elsevier, vol. 32(1), pages 1-9.
    24. Boying Li & Chun-Ping Chang & Yin Chu & Bo Sui, 2020. "Oil prices and geopolitical risks: What implications are offered via multi-domain investigations?," Energy & Environment, , vol. 31(3), pages 492-516, May.
    25. David E. Rapach & Jack K. Strauss & Guofu Zhou, 2013. "International Stock Return Predictability: What Is the Role of the United States?," Journal of Finance, American Finance Association, vol. 68(4), pages 1633-1662, August.
    26. Chengyuan Mao & Wenjiao Xu & Yiwen Huang & Xintong Zhang & Nan Zheng & Xinhuan Zhang, 2023. "Investigation of Passengers’ Perceived Transfer Distance in Urban Rail Transit Stations Using XGBoost and SHAP," Sustainability, MDPI, vol. 15(10), pages 1-22, May.
    27. Zhao, Yuan & Zhang, Weiguo & Gong, Xue & Wang, Chao, 2021. "A novel method for online real-time forecasting of crude oil price," Applied Energy, Elsevier, vol. 303(C).
    28. Guliyev, Hasraddin & Mustafayev, Eldayag, 2022. "Predicting the changes in the WTI crude oil price dynamics using machine learning models," Resources Policy, Elsevier, vol. 77(C).
    29. Hamilton, James D, 1983. "Oil and the Macroeconomy since World War II," Journal of Political Economy, University of Chicago Press, vol. 91(2), pages 228-248, April.
    30. Gozgor, Giray & Lau, Chi Keung Marco & Bilgin, Mehmet Huseyin, 2016. "Commodity markets volatility transmission: Roles of risk perceptions and uncertainty in financial markets," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 44(C), pages 35-45.
    31. Fenghua Wen & Jihong Xiao & Xiaohua Xia & Bin Chen & Zhengyan Xiao & Jinyi Li, 2019. "Oil Prices and Chinese Stock Market: Nonlinear Causality and Volatility Persistence," Emerging Markets Finance and Trade, Taylor & Francis Journals, vol. 55(6), pages 1247-1263, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lu, Xinjie & Ma, Feng & Wang, Tianyang & Wen, Fenghua, 2023. "International stock market volatility: A data-rich environment based on oil shocks," Journal of Economic Behavior & Organization, Elsevier, vol. 214(C), pages 184-215.
    2. Stavros Degiannakis & George Filis & Vipin Arora, 2018. "Oil Prices and Stock Markets: A Review of the Theory and Empirical Evidence," The Energy Journal, , vol. 39(5), pages 85-130, September.
    3. Wen, Danyan & Wang, Gang-Jin & Ma, Chaoqun & Wang, Yudong, 2019. "Risk spillovers between oil and stock markets: A VAR for VaR analysis," Energy Economics, Elsevier, vol. 80(C), pages 524-535.
    4. Kyritsis, Evangelos & Serletis, Apostolos, 2018. "The zero lower bound and market spillovers: Evidence from the G7 and Norway," Research in International Business and Finance, Elsevier, vol. 44(C), pages 100-123.
    5. Wang, Yudong & Wu, Chongfeng & Yang, Li, 2013. "Oil price shocks and stock market activities: Evidence from oil-importing and oil-exporting countries," Journal of Comparative Economics, Elsevier, vol. 41(4), pages 1220-1239.
    6. Lang, Korbinian & Auer, Benjamin R., 2020. "The economic and financial properties of crude oil: A review," The North American Journal of Economics and Finance, Elsevier, vol. 52(C).
    7. Haykir, Ozkan & Yagli, Ibrahim & Aktekin Gok, Emine Dilara & Budak, Hilal, 2022. "Oil price explosivity and stock return: Do sector and firm size matter?," Resources Policy, Elsevier, vol. 78(C).
    8. Cunado, Juncal & Perez de Gracia, Fernando, 2014. "Oil price shocks and stock market returns: Evidence for some European countries," Energy Economics, Elsevier, vol. 42(C), pages 365-377.
    9. Pönkä, Harri, 2016. "Real oil prices and the international sign predictability of stock returns," Finance Research Letters, Elsevier, vol. 17(C), pages 79-87.
    10. Aastveit, Knut Are, 2014. "Oil price shocks in a data-rich environment," Energy Economics, Elsevier, vol. 45(C), pages 268-279.
    11. Liu, Renren & Chen, Jianzhong & Wen, Fenghua, 2021. "The nonlinear effect of oil price shocks on financial stress: Evidence from China," The North American Journal of Economics and Finance, Elsevier, vol. 55(C).
    12. Lu, Xinjie & Ma, Feng & Wang, Jiqian & Zhu, Bo, 2021. "Oil shocks and stock market volatility: New evidence," Energy Economics, Elsevier, vol. 103(C).
    13. Filis, George & Degiannakis, Stavros & Floros, Christos, 2011. "Dynamic correlation between stock market and oil prices: The case of oil-importing and oil-exporting countries," International Review of Financial Analysis, Elsevier, vol. 20(3), pages 152-164, June.
    14. Ramos, Sofia B. & Veiga, Helena, 2011. "Risk factors in oil and gas industry returns: International evidence," Energy Economics, Elsevier, vol. 33(3), pages 525-542, May.
    15. Valcarcel, Victor J. & Wohar, Mark E., 2013. "Changes in the oil price-inflation pass-through," Journal of Economics and Business, Elsevier, vol. 68(C), pages 24-42.
    16. Diaz, Elena Maria & Molero, Juan Carlos & Perez de Gracia, Fernando, 2016. "Oil price volatility and stock returns in the G7 economies," Energy Economics, Elsevier, vol. 54(C), pages 417-430.
    17. Knut Are Aastveit & Hilde C. Bjørnland & Leif Anders Thorsrud, 2015. "What Drives Oil Prices? Emerging Versus Developed Economies," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 30(7), pages 1013-1028, November.
    18. Jaime Casassus & Freddy Higuera, 2011. "Stock Return Predictability and Oil Prices," Documentos de Trabajo 406, Instituto de Economia. Pontificia Universidad Católica de Chile..
    19. Broadstock, David C. & Filis, George, 2014. "Oil price shocks and stock market returns: New evidence from the United States and China," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 33(C), pages 417-433.
    20. Chen, Hongtao & Liu, Li & Li, Xiaolei, 2018. "The predictive content of CBOE crude oil volatility index," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 492(C), pages 837-850.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:5:p:1001-:d:1342719. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.