IDEAS home Printed from https://ideas.repec.org/r/eee/energy/v44y2012i1p682-691.html
   My bibliography  Save this item

Decoupling economic growth from carbon dioxide emissions: A decomposition analysis of Italian energy consumption

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Jie-fang Dong & Qiang Wang & Chun Deng & Xing-min Wang & Xiao-lei Zhang, 2016. "How to Move China toward a Green-Energy Economy: From a Sector Perspective," Sustainability, MDPI, vol. 8(4), pages 1-18, April.
  2. Zaman, Khalid & Mushtaq Khan, Muhammad & Ahmad, Mehboob, 2013. "Factors affecting commercial energy consumption in Pakistan: Progress in energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 107-135.
  3. Wang, Chunhua, 2013. "Differential output growth across regions and carbon dioxide emissions: Evidence from U.S. and China," Energy, Elsevier, vol. 53(C), pages 230-236.
  4. Lu Wan & Zi-Long Wang & Jhony Choon Yeong Ng, 2016. "Measurement Research on the Decoupling Effect of Industries’ Carbon Emissions—Based on the Equipment Manufacturing Industry in China," Energies, MDPI, vol. 9(11), pages 1-17, November.
  5. Ming-Ming Zhao & Rongrong Li, 2018. "Decoupling and decomposition analysis of carbon emissions from economic output in Chinese Guangdong Province: A sector perspective," Energy & Environment, , vol. 29(4), pages 543-555, June.
  6. Zhang, Zilong & Chen, Xingpeng & Heck, Peter & Xue, Bing & Liu, Ye, 2015. "Empirical study on the environmental pressure versus economic growth in China during 1991–2012," Resources, Conservation & Recycling, Elsevier, vol. 101(C), pages 182-193.
  7. Rui Jiang & Rongrong Li, 2017. "Decomposition and Decoupling Analysis of Life-Cycle Carbon Emission in China’s Building Sector," Sustainability, MDPI, vol. 9(5), pages 1-18, May.
  8. Ruzzenenti, Franco & Basosi, Riccardo, 2017. "Modelling the rebound effect with network theory: An insight into the European freight transport sector," Energy, Elsevier, vol. 118(C), pages 272-283.
  9. Michael L. Polemis & Panagiotis Fotis & Panayiotis G. Tzeremes & Nickolaos G. Tzeremes, 2022. "On the examination of the decoupling effect of air pollutants from economic growth: a convergence analysis for the US," Letters in Spatial and Resource Sciences, Springer, vol. 15(3), pages 691-707, December.
  10. Jia Li & Yahong Zheng & Bing Liu & Yanyi Chen & Zhihang Zhong & Chenyu Dong & Chaoqun Wang, 2024. "The Synergistic Relationship between Low-Carbon Development of Road Freight Transport and Its Economic Efficiency—A Case Study of Wuhan, China," Sustainability, MDPI, vol. 16(7), pages 1-21, March.
  11. Fernández González, P. & Presno, M.J. & Landajo, M., 2015. "Regional and sectoral attribution to percentage changes in the European Divisia carbonization index," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1437-1452.
  12. Ling Li & Ling Tang & Junrong Zhang, 2019. "Coupling Structural Decomposition Analysis and Sensitivity Analysis to Investigate CO 2 Emission Intensity in China," Energies, MDPI, vol. 12(12), pages 1-23, June.
  13. Wang, Qiang & Jiang, Xue-ting & Li, Rongrong, 2017. "Comparative decoupling analysis of energy-related carbon emission from electric output of electricity sector in Shandong Province, China," Energy, Elsevier, vol. 127(C), pages 78-88.
  14. Saboori, Behnaz & Sapri, Maimunah & bin Baba, Maizan, 2014. "Economic growth, energy consumption and CO2 emissions in OECD (Organization for Economic Co-operation and Development)'s transport sector: A fully modified bi-directional relationship approach," Energy, Elsevier, vol. 66(C), pages 150-161.
  15. Shaikh, Mohammad A. & Kucukvar, Murat & Onat, Nuri Cihat & Kirkil, Gokhan, 2017. "A framework for water and carbon footprint analysis of national electricity production scenarios," Energy, Elsevier, vol. 139(C), pages 406-421.
  16. Enkhjargal Enkhbat & Yong Geng & Xi Zhang & Huijuan Jiang & Jingyu Liu & Dong Wu, 2020. "Driving Forces of Air Pollution in Ulaanbaatar City Between 2005 and 2015: An Index Decomposition Analysis," Sustainability, MDPI, vol. 12(8), pages 1-17, April.
  17. Papież, Monika & Śmiech, Sławomir & Frodyma, Katarzyna, 2022. "Does the European Union energy policy support progress in decoupling economic growth from emissions?," Energy Policy, Elsevier, vol. 170(C).
  18. Cui, Yu & Khan, Sufyan Ullah & Sauer, Johannes & Kipperberg, Gorm & Zhao, Minjuan, 2023. "Agricultural carbon footprint, energy utilization and economic quality: What causes what, and where?," Energy, Elsevier, vol. 278(PA).
  19. André Gaspar Ciepliski & Simone D'Alessandro & Tiziano Distefano & Pietro Guarnieri, 2020. "Coupling environmental transition and social prosperity: a scenario-analysis of the Italian case," Discussion Papers 2020/256, Dipartimento di Economia e Management (DEM), University of Pisa, Pisa, Italy.
  20. Yu, Bolin & Fang, Debin & Dong, Feng, 2020. "Study on the evolution of thermal power generation and its nexus with economic growth: Evidence from EU regions," Energy, Elsevier, vol. 205(C).
  21. Zilong Zhang & Bing Xue & Jiaxing Pang & Xingpeng Chen, 2016. "The Decoupling of Resource Consumption and Environmental Impact from Economic Growth in China: Spatial Pattern and Temporal Trend," Sustainability, MDPI, vol. 8(3), pages 1-13, February.
  22. Zhao, Congyu & Wang, Kun & Dong, Xiucheng & Dong, Kangyin, 2022. "Is smart transportation associated with reduced carbon emissions? The case of China," Energy Economics, Elsevier, vol. 105(C).
  23. Larry Hughes & Moniek Jong & Zach Thorne, 2021. "(De)coupling and (De)carbonizing in the economies and energy systems of the G20," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(4), pages 5614-5639, April.
  24. Kaivo-oja, J. & Luukkanen, J. & Panula-Ontto, J. & Vehmas, J. & Chen, Y. & Mikkonen, S. & Auffermann, B., 2014. "Are structural change and modernisation leading to convergence in the CO2 economy? Decomposition analysis of China, EU and USA," Energy, Elsevier, vol. 72(C), pages 115-125.
  25. Cerdeira Bento, João Paulo & Moutinho, Victor, 2016. "CO2 emissions, non-renewable and renewable electricity production, economic growth, and international trade in Italy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 142-155.
  26. repec:fes:wpaper:wpaper77 is not listed on IDEAS
  27. Ying Li & Xu Han & Bingbing Zhou & Ligang Lv & Yeting Fan, 2023. "Farmland Dynamics and Its Grain Production Efficiency and Ecological Security in China’s Major Grain-Producing Regions between 2000 and 2020," Land, MDPI, vol. 12(7), pages 1-17, July.
  28. Ščasný, M. & Ang, B.W. & Rečka, L., 2021. "Decomposition analysis of air pollutants during the transition and post-transition periods in the Czech Republic," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
  29. Li, Ying & Beeton, R.J.S. & Halog, Anthony & Sigler, Thomas, 2016. "Evaluating urban sustainability potential based on material flow analysis of inputs and outputs: A case study in Jinchang City, China," Resources, Conservation & Recycling, Elsevier, vol. 110(C), pages 87-98.
  30. Yao Bo Shi & Xin Xin Zhao & Chyi-Lu Jang & Chun-Ping Chang, 2019. "Decoupling effect between economic development and environmental pollution: A spatial-temporal investigation using 31 provinces in China," Energy & Environment, , vol. 30(5), pages 755-775, August.
  31. Nässén, Jonas, 2014. "Determinants of greenhouse gas emissions from Swedish private consumption: Time-series and cross-sectional analyses," Energy, Elsevier, vol. 66(C), pages 98-106.
  32. Mariola Pilatowska & Aneta Wlodarczyk, 2018. "Decoupling Economic Growth From Carbon Dioxide Emissions in the EU Countries," Montenegrin Journal of Economics, Economic Laboratory for Transition Research (ELIT), vol. 14(1), pages 7-26.
  33. Achour, Houda & Belloumi, Mounir, 2016. "Investigating the causal relationship between transport infrastructure, transport energy consumption and economic growth in Tunisia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 988-998.
  34. Rui Jiang & Rongrong Li & Qiuhong Wu, 2019. "Investigation for the Decomposition of Carbon Emissions in the USA with C-D Function and LMDI Methods," Sustainability, MDPI, vol. 11(2), pages 1-15, January.
  35. Dang, Han & Xu, Runsheng & Zhang, Jianliang & Wang, Mingyong & Ye, Lian & Jia, Guoli, 2023. "Removal of oxygen-containing functional groups during hydrothermal carbonization of biomass: Experimental and DFT study," Energy, Elsevier, vol. 276(C).
  36. Boratyński, Jakub, 2021. "Decomposing structural decomposition: The role of changes in individual industry shares," Energy Economics, Elsevier, vol. 103(C).
  37. Mumtaz, Rehma & Zaman, Khalid & Sajjad, Faiza & Lodhi, Muhammad Saeed & Irfan, Muhammad & Khan, Imran & Naseem, Imran, 2014. "Modeling the causal relationship between energy and growth factors: Journey towards sustainable development," Renewable Energy, Elsevier, vol. 63(C), pages 353-365.
  38. Jihene Sbaouelgi, 2019. "Economic Growth and Environmental Quality: Stylist Facts and Environmental Kuznets Curve : Case of Tunisia," Asian Economic and Financial Review, Asian Economic and Social Society, vol. 9(6), pages 724-742, June.
  39. Xu, Xianshuo & Zhao, Tao & Liu, Nan & Kang, Jidong, 2014. "Changes of energy-related GHG emissions in China: An empirical analysis from sectoral perspective," Applied Energy, Elsevier, vol. 132(C), pages 298-307.
  40. Ozdemir, Ali Can, 2023. "Decomposition and decoupling analysis of carbon dioxide emissions in electricity generation by primary fossil fuels in Turkey," Energy, Elsevier, vol. 273(C).
  41. Chen, B. & Yang, Q. & Li, J.S. & Chen, G.Q., 2017. "Decoupling analysis on energy consumption, embodied GHG emissions and economic growth — The case study of Macao," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 662-672.
  42. Kang, Jidong & Zhao, Tao & Liu, Nan & Zhang, Xin & Xu, Xianshuo & Lin, Tao, 2014. "A multi-sectoral decomposition analysis of city-level greenhouse gas emissions: Case study of Tianjin, China," Energy, Elsevier, vol. 68(C), pages 562-571.
  43. Yalan Zhao & Yaoqiu Kuang & Ningsheng Huang, 2016. "Decomposition Analysis in Decoupling Transport Output from Carbon Emissions in Guangdong Province, China," Energies, MDPI, vol. 9(4), pages 1-23, April.
  44. Liguo Zhang & Zhanqi Wang & Ji Chai & Yongpeng Fu & Chao Wei & Ying Wang, 2019. "Temporal and Spatial Changes of Non-Point Source N and P and Its Decoupling from Agricultural Development in Water Source Area of Middle Route of the South-to-North Water Diversion Project," Sustainability, MDPI, vol. 11(3), pages 1-23, February.
  45. Ionica Oncioiu & Anca Gabriela Petrescu & Eugenia Grecu & Marius Petrescu, 2017. "Optimizing the Renewable Energy Potential: Myth or Future Trend in Romania," Energies, MDPI, vol. 10(6), pages 1-14, May.
  46. Jianbo Hu & Shanshan Gui & Wei Zhang, 2017. "Decoupling Analysis of China’s Product Sector Output and Its Embodied Carbon Emissions—An Empirical Study Based on Non-Competitive I-O and Tapio Decoupling Model," Sustainability, MDPI, vol. 9(5), pages 1-17, May.
  47. Shasha Wang & Rongrong Li, 2018. "Toward the Coordinated Sustainable Development of Urban Water Resource Use and Economic Growth: An Empirical Analysis of Tianjin City, China," Sustainability, MDPI, vol. 10(5), pages 1-13, April.
  48. Yanan Chen & Sheng Lin, 2015. "Decomposition and allocation of energy-related carbon dioxide emission allowance over provinces of China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 76(3), pages 1893-1909, April.
  49. Andreoni, V. & Galmarini, S., 2012. "European CO2 emission trends: A decomposition analysis for water and aviation transport sectors," Energy, Elsevier, vol. 45(1), pages 595-602.
  50. Elisabeth Conrad & Louis F. Cassar, 2014. "Decoupling Economic Growth and Environmental Degradation: Reviewing Progress to Date in the Small Island State of Malta," Sustainability, MDPI, vol. 6(10), pages 1-22, September.
  51. Qingshan Yang & Jie Liu & Yu Zhang, 2017. "Decoupling Agricultural Nonpoint Source Pollution from Crop Production: A Case Study of Heilongjiang Land Reclamation Area, China," Sustainability, MDPI, vol. 9(6), pages 1-11, June.
  52. Zhao, Xingrong & Zhang, Xi & Shao, Shuai, 2016. "Decoupling CO2 emissions and industrial growth in China over 1993–2013: The role of investment," Energy Economics, Elsevier, vol. 60(C), pages 275-292.
  53. Ping Zhou & Hailing Li, 2022. "Carbon Emissions from Manufacturing Sector in Jiangsu Province: Regional Differences and Decomposition of Driving Factors," Sustainability, MDPI, vol. 14(15), pages 1-17, July.
  54. Dequn Zhou & Lu Zhang & Donglan Zha & Fei Wu & Qunwei Wang, 2019. "Decoupling and decomposing analysis of construction industry’s energy consumption in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 95(1), pages 39-53, January.
  55. Shu Yang & Dingtao Zhao & Yanrui Wu & Jin Fan, 2013. "Regional Variation in Carbon Emissions and its Driving Forces in China: An Index Decomposition Analysis," Energy & Environment, , vol. 24(7-8), pages 1249-1270, December.
  56. Manel Daldoul & Ahlem Dakhlaoui, 2018. "Using the LMDI Decomposition Approach to Analyze the Influencing Factors of Carbon Emissions in Tunisian Transportation Sector," International Journal of Energy Economics and Policy, Econjournals, vol. 8(6), pages 22-28.
  57. Krarti, Moncef & Dubey, Kankana & Howarth, Nicholas, 2017. "Evaluation of building energy efficiency investment options for the Kingdom of Saudi Arabia," Energy, Elsevier, vol. 134(C), pages 595-610.
  58. Xue-Ting Jiang & Jie-Fang Dong & Xing-Min Wang & Rong-Rong Li, 2016. "The Multilevel Index Decomposition of Energy-Related Carbon Emission and Its Decoupling with Economic Growth in USA," Sustainability, MDPI, vol. 8(9), pages 1-16, August.
  59. Jia, Hongxiang & Li, Tianjiao & Wang, Anjian & Liu, Guwang & Guo, Xiaoqian, 2021. "Decoupling analysis of economic growth and mineral resources consumption in China from 1992 to 2017: A comparison between tonnage and exergy perspective," Resources Policy, Elsevier, vol. 74(C).
  60. Radwan, Amira & Hongyun, Han & Achraf, Abdelhak & Mustafa, Ahmed M., 2022. "Energy use and energy-related carbon dioxide emissions drivers in Egypt's economy: Focus on the agricultural sector with a structural decomposition analysis," Energy, Elsevier, vol. 258(C).
  61. Ang, B.W. & Goh, Tian, 2016. "Carbon intensity of electricity in ASEAN: Drivers, performance and outlook," Energy Policy, Elsevier, vol. 98(C), pages 170-179.
  62. Qingyou Yan & Yaxian Wang & Tomas Baležentis & Yikai Sun & Dalia Streimikiene, 2018. "Energy-Related CO 2 Emission in China’s Provincial Thermal Electricity Generation: Driving Factors and Possibilities for Abatement," Energies, MDPI, vol. 11(5), pages 1-25, April.
  63. Köne, Aylin Çiğdem & Büke, Tayfun, 2019. "Factor analysis of projected carbon dioxide emissions according to the IPCC based sustainable emission scenario in Turkey," Renewable Energy, Elsevier, vol. 133(C), pages 914-918.
  64. Lu, Qinli & Yang, Hong & Huang, Xianjin & Chuai, Xiaowei & Wu, Changyan, 2015. "Multi-sectoral decomposition in decoupling industrial growth from carbon emissions in the developed Jiangsu Province, China," Energy, Elsevier, vol. 82(C), pages 414-425.
  65. Cheng-Yih Hong & Yu-Shuang Yen, 2019. "A Way from Renewable Energy Sources to Urban Sustainable Development: Empirical Evidences from Taichung City," International Journal of Energy Economics and Policy, Econjournals, vol. 9(2), pages 83-88.
  66. Goh, Tian & Ang, B.W. & Xu, X.Y., 2018. "Quantifying drivers of CO2 emissions from electricity generation – Current practices and future extensions," Applied Energy, Elsevier, vol. 231(C), pages 1191-1204.
  67. Rui Jiang & Yulin Zhou & Rongrong Li, 2018. "Moving to a Low-Carbon Economy in China: Decoupling and Decomposition Analysis of Emission and Economy from a Sector Perspective," Sustainability, MDPI, vol. 10(4), pages 1-12, March.
  68. Guoyin Xu & Tong Zhao & Rong Wang, 2022. "Decomposition and Decoupling Analysis of Factors Affecting Carbon Emissions in China’s Regional Logistics Industry," Sustainability, MDPI, vol. 14(10), pages 1-19, May.
  69. Jinxing Hu & Cuiying Shao & Zhaolong Zhang, 2022. "The Impact of Sustainable Regional Development Policy on Carbon Emissions: Evidence from Yangtze River Delta of China," Energies, MDPI, vol. 15(24), pages 1-25, December.
  70. Manuel Manzanedo & Carlos Alonso de Armiño & Nuño Basurto & Roberto Alcalde & Belen Alonso, 2024. "Divergences between EU Members on the Sustainability of Road Freight Transport," Sustainability, MDPI, vol. 16(15), pages 1-17, July.
  71. Inhwan Ko & Taedong Lee, 2022. "Carbon pricing and decoupling between greenhouse gas emissions and economic growth: A panel study of 29 European countries, 1996–2014," Review of Policy Research, Policy Studies Organization, vol. 39(5), pages 654-673, September.
  72. Yi Li & Yan Luo & Yingzi Wang & Laili Wang & Manhong Shen, 2017. "Decomposing the Decoupling of Water Consumption and Economic Growth in China’s Textile Industry," Sustainability, MDPI, vol. 9(3), pages 1-17, March.
  73. Ji Zheng & Yingjie Hu & Suocheng Dong & Yu Li, 2019. "The Spatiotemporal Pattern of Decoupling Transport CO 2 Emissions from Economic Growth across 30 Provinces in China," Sustainability, MDPI, vol. 11(9), pages 1-18, May.
  74. Cieplinski, A. & D’Alessandro, S. & Distefano, T. & Guarnieri, P., 2021. "Coupling environmental transition and social prosperity: a scenario-analysis of the Italian case," Structural Change and Economic Dynamics, Elsevier, vol. 57(C), pages 265-278.
  75. Wang, Miao & Feng, Chao, 2018. "Investigating the drivers of energy-related CO2 emissions in China’s industrial sector: From regional and provincial perspectives," Structural Change and Economic Dynamics, Elsevier, vol. 46(C), pages 136-147.
  76. Andreoni, Valeria, 2022. "Drivers of coal consumption changes: A decomposition analysis for Chinese regions," Energy, Elsevier, vol. 242(C).
  77. Lima, Fátima & Nunes, Manuel Lopes & Cunha, Jorge & Lucena, André F.P., 2017. "Driving forces for aggregate energy consumption: A cross-country approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 1033-1050.
  78. Mingkai Liu & Hongyan Zhang & Changxin Liu & Xiaoju Gong, 2024. "Spatial-Temporal Heterogeneity and Decoupling Mechanism of Resource Curse, Environmental Regulation and Resource Industry Transformation in Post-Development Areas: Evidence from Inner Mongolia, China," Land, MDPI, vol. 13(5), pages 1-23, May.
  79. Salahuddin, Mohammad & Gow, Jeff, 2014. "Economic growth, energy consumption and CO2 emissions in Gulf Cooperation Council countries," Energy, Elsevier, vol. 73(C), pages 44-58.
  80. Roinioti, Argiro & Koroneos, Christopher, 2017. "The decomposition of CO2 emissions from energy use in Greece before and during the economic crisis and their decoupling from economic growth," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 448-459.
  81. Rodrigues, João F.D. & Wang, Juan & Behrens, Paul & de Boer, Paul, 2020. "Drivers of CO2 emissions from electricity generation in the European Union 2000–2015," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
  82. Chontanawat, Jaruwan & Wiboonchutikula, Paitoon & Buddhivanich, Atinat, 2014. "Decomposition analysis of the change of energy intensity of manufacturing industries in Thailand," Energy, Elsevier, vol. 77(C), pages 171-182.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.