IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v13y2024i5p624-d1389215.html
   My bibliography  Save this article

Spatial-Temporal Heterogeneity and Decoupling Mechanism of Resource Curse, Environmental Regulation and Resource Industry Transformation in Post-Development Areas: Evidence from Inner Mongolia, China

Author

Listed:
  • Mingkai Liu

    (School of Economics, Beijing Technology and Business University, Beijing 100048, China)

  • Hongyan Zhang

    (College of Resources and Environmental Economics, Inner Mongolia University of Finance and Economics, Hohhot 010070, China)

  • Changxin Liu

    (Institution of Science and Development, China Academy of Sciences, Beijing 100190, China)

  • Xiaoju Gong

    (School of Economics, Beijing Technology and Business University, Beijing 100048, China)

Abstract

Resource curse and environmental regulation are the key bottlenecks that hinder the sustainable development of the resource industry. A reasonable assessment of the decoupling relationship between resource supply, environment regulation and resource industry transformation is helpful to promote the decision-making of industrial restructuring in post-development regions. Taking Inner Mongolia Autonomous Region of China as the research object, panel data related to resources, environment and industry from 2010 to 2021 are selected to evaluate the spatial and temporal evolution of regional resource supply security, environmental regulatory pressure and resource industry transformation efficiency, measure the decoupling index among the factors, and use geographic detector technology to identify the constraints affecting factor decoupling. The results show the following: (1) the resource curse effect of Inner Mongolia is not significant, and some resource industries have prominent advantages; (2) the security of resource supply and the transformation efficiency of the resource industry show overall upward trend, the pressure of environmental regulation is basically balanced, and the development level of factors in resource-endowed regions and central cities is relatively high; (3) the spatial and temporal evolution of the decoupling relationship between resource supply, environmental regulation and resource industry transformation is uncertain, and the resilience of regional economic and social governance is poor; (4) resource endowment and resource industry advantages are the key that restricts the decoupling of factors, and the cumulative effect of ecological governance is likely to lead to the randomness of the decoupling of environmental regulation and resource industry transformation. In addition, this study suggests that the post-development areas should pay attention to the classification of resource industry relief, trans-regional economic and social collaborative governance and special resources exploitation.

Suggested Citation

  • Mingkai Liu & Hongyan Zhang & Changxin Liu & Xiaoju Gong, 2024. "Spatial-Temporal Heterogeneity and Decoupling Mechanism of Resource Curse, Environmental Regulation and Resource Industry Transformation in Post-Development Areas: Evidence from Inner Mongolia, China," Land, MDPI, vol. 13(5), pages 1-23, May.
  • Handle: RePEc:gam:jlands:v:13:y:2024:i:5:p:624-:d:1389215
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/13/5/624/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/13/5/624/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kaiming Zhong & Hongyan Fu & Tinghui Li, 2022. "Can the Digital Economy Facilitate Carbon Emissions Decoupling? An Empirical Study Based on Provincial Data in China," IJERPH, MDPI, vol. 19(11), pages 1-25, June.
    2. Pan, Minjie & Zhao, Xin & lv, Kangjuan & Rosak-Szyrocka, Joanna & Mentel, Grzegorz & Truskolaski, Tadeusz, 2023. "Internet development and carbon emission-reduction in the era of digitalization: Where will resource-based cities go?," Resources Policy, Elsevier, vol. 81(C).
    3. Wei, Wendong & Cai, Wenqiu & Guo, Yi & Bai, Caiquan & Yang, Luzhen, 2020. "Decoupling relationship between energy consumption and economic growth in China's provinces from the perspective of resource security," Resources Policy, Elsevier, vol. 68(C).
    4. Zhidong Li & Zhifan Zhou, 2020. "Fuzzy Comprehensive Evaluation of Decoupling Economic Growth from Environment Costs in China’s Resource-Based Cities," Mathematical Problems in Engineering, Hindawi, vol. 2020, pages 1-14, June.
    5. Gaolan Hou & Zhou Zou & Tianran Zhang & Yue Meng, 2019. "Analysis of the Effect of Industrial Transformation of Resource-Based Cities in Northeast China," Economies, MDPI, vol. 7(2), pages 1-22, May.
    6. Andreoni, V. & Galmarini, S., 2012. "Decoupling economic growth from carbon dioxide emissions: A decomposition analysis of Italian energy consumption," Energy, Elsevier, vol. 44(1), pages 682-691.
    7. Dong, Bai & Zhang, Ming & Mu, Hailin & Su, Xuanming, 2016. "Study on decoupling analysis between energy consumption and economic growth in Liaoning Province," Energy Policy, Elsevier, vol. 97(C), pages 414-420.
    8. Jinghan Zeng, 2019. "Chinese views of global economic governance," Third World Quarterly, Taylor & Francis Journals, vol. 40(3), pages 578-594, March.
    9. Che, Shuai & Wang, Jun, 2022. "Can environmental regulation solve the carbon curse of natural resource dependence: Evidence from China," Resources Policy, Elsevier, vol. 79(C).
    10. Cunfang Li & Tao Song & Wenfu Wang & Xinyi Gu & Zhan Li & Yongzeng Lai, 2022. "Analysis and Measurement of Barriers to Green Transformation Behavior of Resource Industries," IJERPH, MDPI, vol. 19(21), pages 1-22, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jia, Hongxiang & Li, Tianjiao & Wang, Anjian & Liu, Guwang & Guo, Xiaoqian, 2021. "Decoupling analysis of economic growth and mineral resources consumption in China from 1992 to 2017: A comparison between tonnage and exergy perspective," Resources Policy, Elsevier, vol. 74(C).
    2. Li, Zihao & Yuan, Bingbing & Bai, Tingting & Dong, Xu & Wu, Haitao, 2024. "Shooting two hawks with one arrow: The role of digitization on the coordinated development of resources and environment," Resources Policy, Elsevier, vol. 90(C).
    3. Ji Zheng & Yingjie Hu & Suocheng Dong & Yu Li, 2019. "The Spatiotemporal Pattern of Decoupling Transport CO 2 Emissions from Economic Growth across 30 Provinces in China," Sustainability, MDPI, vol. 11(9), pages 1-18, May.
    4. Guoyin Xu & Tong Zhao & Rong Wang, 2022. "Decomposition and Decoupling Analysis of Factors Affecting Carbon Emissions in China’s Regional Logistics Industry," Sustainability, MDPI, vol. 14(10), pages 1-19, May.
    5. Zhuang, Mufan & Gao, Ziyan & Geng, Yong & Xiao, Shijiang, 2022. "Spatial distribution pattern of embodied natural resources use in China and its relationship with socioeconomic development: From an exergetic perspective," Resources Policy, Elsevier, vol. 79(C).
    6. Mao, Fengfu & Hou, Yuqiao & Wang, Rong & Wang, Zongshun, 2023. "Can industrial intelligence break the carbon curse of natural resources in the context of Post-Covid-19 period? Fresh evidence from China," Resources Policy, Elsevier, vol. 86(PA).
    7. Ping Zhou & Hailing Li, 2022. "Carbon Emissions from Manufacturing Sector in Jiangsu Province: Regional Differences and Decomposition of Driving Factors," Sustainability, MDPI, vol. 14(15), pages 1-17, July.
    8. Rui Jiang & Rongrong Li & Qiuhong Wu, 2019. "Investigation for the Decomposition of Carbon Emissions in the USA with C-D Function and LMDI Methods," Sustainability, MDPI, vol. 11(2), pages 1-15, January.
    9. Dequn Zhou & Lu Zhang & Donglan Zha & Fei Wu & Qunwei Wang, 2019. "Decoupling and decomposing analysis of construction industry’s energy consumption in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 95(1), pages 39-53, January.
    10. Hossain, Mohammad Razib & Singh, Sanjeet & Sharma, Gagan Deep & Apostu, Simona-Andreea & Bansal, Pooja, 2023. "Overcoming the shock of energy depletion for energy policy? Tracing the missing link between energy depletion, renewable energy development and decarbonization in the USA," Energy Policy, Elsevier, vol. 174(C).
    11. Jia Li & Yahong Zheng & Bing Liu & Yanyi Chen & Zhihang Zhong & Chenyu Dong & Chaoqun Wang, 2024. "The Synergistic Relationship between Low-Carbon Development of Road Freight Transport and Its Economic Efficiency—A Case Study of Wuhan, China," Sustainability, MDPI, vol. 16(7), pages 1-22, March.
    12. Larry Hughes & Moniek Jong & Zach Thorne, 2021. "(De)coupling and (De)carbonizing in the economies and energy systems of the G20," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(4), pages 5614-5639, April.
    13. Kaivo-oja, J. & Luukkanen, J. & Panula-Ontto, J. & Vehmas, J. & Chen, Y. & Mikkonen, S. & Auffermann, B., 2014. "Are structural change and modernisation leading to convergence in the CO2 economy? Decomposition analysis of China, EU and USA," Energy, Elsevier, vol. 72(C), pages 115-125.
    14. Rao, Congjun & Zhang, Yue & Wen, Jianghui & Xiao, Xinping & Goh, Mark, 2023. "Energy demand forecasting in China: A support vector regression-compositional data second exponential smoothing model," Energy, Elsevier, vol. 263(PC).
    15. Wang, Zhibao & Zhao, Nana & Wei, Wendong & Zhang, Qianwen, 2021. "A differentiated energy Kuznets curve: Evidence from mainland China," Energy, Elsevier, vol. 214(C).
    16. Wenyao Guo & Xianzhong Mu, 2022. "Identification of Cities in Underdeveloped Resource-Rich Areas and Its Sustainable Development: Evidence from China," Sustainability, MDPI, vol. 14(20), pages 1-16, October.
    17. Wang, Qiang & Han, Xinyu, 2021. "Is decoupling embodied carbon emissions from economic output in Sino-US trade possible?," Technological Forecasting and Social Change, Elsevier, vol. 169(C).
    18. Guorong Chen & Changyan Liu, 2023. "Can Low–Carbon City Development Stimulate Population Growth? Insights from China’s Low–Carbon Pilot Program," Sustainability, MDPI, vol. 15(20), pages 1-22, October.
    19. Gao, Zhiyuan & Zhang, Yahui & Li, Lianqing & Hao, Yu, 2024. "Will resource tax reform raise green total factor productivity levels in cities? Evidence from 114 resource-based cities in China," Resources Policy, Elsevier, vol. 88(C).
    20. Mingkai Liu & Changxin Liu & Xiaodong Pei & Shouting Zhang & Xun Ge & Hongyan Zhang & Yang Li, 2021. "Sustainable Risk Assessment of Resource Industry at Provincial Level in China," Sustainability, MDPI, vol. 13(8), pages 1-15, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:13:y:2024:i:5:p:624-:d:1389215. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.