IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v139y2017icp406-421.html
   My bibliography  Save this article

A framework for water and carbon footprint analysis of national electricity production scenarios

Author

Listed:
  • Shaikh, Mohammad A.
  • Kucukvar, Murat
  • Onat, Nuri Cihat
  • Kirkil, Gokhan

Abstract

While carbon footprint reduction potential and energy security aspects of renewable and non-renewable resources are widely considered in energy policy, their effects on water resources are mostly overlooked. This research aims to develop a framework for water and carbon footprint analysis to estimate the current and future trends of water consumption and withdrawal by electricity production sectors for national energy development plans – alongside carbon emissions from various electricity sources. With this motivation, the Turkish electric power industry is selected as a case study and a decision support tool is developed to determine the water consumption, withdrawal and carbon emissions from energy mixes under three different scenarios, namely Business-As-Usual (BAU), Official Governmental Plan (OGP), and Renewable Energy-Focused Development Plan (REFDP). The results indicate that water is used substantially even by renewable resources, such as hydroelectricity and biomass, which are generally considered to be more environmental friendly than other energy sources. The average water consumption of the OGP energy mix in 2030 is estimated to be about 8.1% and 9.6% less than that of the BAU and REFDP scenarios, respectively. On the other hand, it is found that the water withdrawal of the energy mix in 2030 under the REFDP scenario is about 46.3% and 16.9% less than that of BAU and OGP scenarios. Carbon emissions from BAU are projected to be 24% higher than OGP and 39% higher than REFDP in 2030. Carbon emissions and water usage are strongly correlated in BAU scenario as compared with OGP and REFDP, thus carbon friendly energy sources will result in fewer water consumptions and withdrawals, particularly under REFDP.

Suggested Citation

  • Shaikh, Mohammad A. & Kucukvar, Murat & Onat, Nuri Cihat & Kirkil, Gokhan, 2017. "A framework for water and carbon footprint analysis of national electricity production scenarios," Energy, Elsevier, vol. 139(C), pages 406-421.
  • Handle: RePEc:eee:energy:v:139:y:2017:i:c:p:406-421
    DOI: 10.1016/j.energy.2017.07.124
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544217313087
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2017.07.124?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ozturk, Ilhan & Acaravci, Ali, 2010. "CO2 emissions, energy consumption and economic growth in Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 3220-3225, December.
    2. Zhang, Ning & Choi, Yongrok, 2013. "Total-factor carbon emission performance of fossil fuel power plants in China: A metafrontier non-radial Malmquist index analysis," Energy Economics, Elsevier, vol. 40(C), pages 549-559.
    3. Yu, Shiwei & Wei, Yi-Ming & Guo, Haixiang & Ding, Liping, 2014. "Carbon emission coefficient measurement of the coal-to-power energy chain in China," Applied Energy, Elsevier, vol. 114(C), pages 290-300.
    4. Zhang, Yue-Jun & Da, Ya-Bin, 2015. "The decomposition of energy-related carbon emission and its decoupling with economic growth in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 1255-1266.
    5. Odeh, Naser A. & Cockerill, Timothy T., 2008. "Life cycle GHG assessment of fossil fuel power plants with carbon capture and storage," Energy Policy, Elsevier, vol. 36(1), pages 367-380, January.
    6. Zhang, Xiaodong & Vesselinov, Velimir V., 2016. "Energy-water nexus: Balancing the tradeoffs between two-level decision makers," Applied Energy, Elsevier, vol. 183(C), pages 77-87.
    7. Yuksek, Omer & Komurcu, Murat Ihsan & Yuksel, Ibrahim & Kaygusuz, Kamil, 2006. "The role of hydropower in meeting Turkey's electric energy demand," Energy Policy, Elsevier, vol. 34(17), pages 3093-3103, November.
    8. Frick, Stephanie & Kaltschmitt, Martin & Schröder, Gerd, 2010. "Life cycle assessment of geothermal binary power plants using enhanced low-temperature reservoirs," Energy, Elsevier, vol. 35(5), pages 2281-2294.
    9. Yang, Jin & Chen, Bin, 2016. "Energy–water nexus of wind power generation systems," Applied Energy, Elsevier, vol. 169(C), pages 1-13.
    10. Ghanadan, Rebecca & Koomey, Jonathan G., 2005. "Using energy scenarios to explore alternative energy pathways in California," Energy Policy, Elsevier, vol. 33(9), pages 1117-1142, June.
    11. Zhu, Zhi-Shuang & Liao, Hua & Cao, Huai-Shu & Wang, Lu & Wei, Yi-Ming & Yan, Jinyue, 2014. "The differences of carbon intensity reduction rate across 89 countries in recent three decades," Applied Energy, Elsevier, vol. 113(C), pages 808-815.
    12. Allen, S.R. & Hammond, G.P., 2010. "Thermodynamic and carbon analyses of micro-generators for UK households," Energy, Elsevier, vol. 35(5), pages 2223-2234.
    13. Chen, Shaoqing & Chen, Bin, 2016. "Urban energy–water nexus: A network perspective," Applied Energy, Elsevier, vol. 184(C), pages 905-914.
    14. Kaygusuz, Kamil, 2009. "Energy and environmental issues relating to greenhouse gas emissions for sustainable development in Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(1), pages 253-270, January.
    15. Hondo, Hiroki, 2005. "Life cycle GHG emission analysis of power generation systems: Japanese case," Energy, Elsevier, vol. 30(11), pages 2042-2056.
    16. Andreoni, V. & Galmarini, S., 2012. "Decoupling economic growth from carbon dioxide emissions: A decomposition analysis of Italian energy consumption," Energy, Elsevier, vol. 44(1), pages 682-691.
    17. Ünler, Alper, 2008. "Improvement of energy demand forecasts using swarm intelligence: The case of Turkey with projections to 2025," Energy Policy, Elsevier, vol. 36(6), pages 1937-1944, June.
    18. Pishgar-Komleh, Seyyed Hassan & Omid, Mahmoud & Heidari, Mohammad Davoud, 2013. "On the study of energy use and GHG (greenhouse gas) emissions in greenhouse cucumber production in Yazd province," Energy, Elsevier, vol. 59(C), pages 63-71.
    19. Fthenakis, Vasilis & Kim, Hyung Chul, 2010. "Life-cycle uses of water in U.S. electricity generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(7), pages 2039-2048, September.
    20. Mainali, Brijesh & Emran, Saad Been & Silveira, Semida, 2017. "Greenhouse gas mitigation using poultry litter management techniques in Bangladesh," Energy, Elsevier, vol. 127(C), pages 155-166.
    21. Thopil, George Alex & Pouris, Anastassios, 2015. "Aggregation and internalisation of electricity externalities in South Africa," Energy, Elsevier, vol. 82(C), pages 501-511.
    22. Greening, Benjamin & Azapagic, Adisa, 2013. "Environmental impacts of micro-wind turbines and their potential to contribute to UK climate change targets," Energy, Elsevier, vol. 59(C), pages 454-466.
    23. Saeed Hadian & Kaveh Madani, 2013. "The Water Demand of Energy: Implications for Sustainable Energy Policy Development," Sustainability, MDPI, vol. 5(11), pages 1-14, November.
    24. Onat, Nuri Cihat & Kucukvar, Murat & Tatari, Omer, 2015. "Conventional, hybrid, plug-in hybrid or electric vehicles? State-based comparative carbon and energy footprint analysis in the United States," Applied Energy, Elsevier, vol. 150(C), pages 36-49.
    25. Atilgan, Burcin & Azapagic, Adisa, 2016. "An integrated life cycle sustainability assessment of electricity generation in Turkey," Energy Policy, Elsevier, vol. 93(C), pages 168-186.
    26. Nugent, Daniel & Sovacool, Benjamin K., 2014. "Assessing the lifecycle greenhouse gas emissions from solar PV and wind energy: A critical meta-survey," Energy Policy, Elsevier, vol. 65(C), pages 229-244.
    27. Sözen, Adnan & Arcaklioglu, Erol & Özkaymak, Mehmet, 2005. "Turkey's net energy consumption," Applied Energy, Elsevier, vol. 81(2), pages 209-221, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Raupp, I. & Costa, F., 2021. "Hydropower expansion planning in Brazil - Environmental improvements," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    2. Radonjič, Gregor & Tompa, Saša, 2018. "Carbon footprint calculation in telecommunications companies – The importance and relevance of scope 3 greenhouse gases emissions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 361-375.
    3. Jinjing Gao & Peng Zhao & Hongwei Zhang & Guozhu Mao & Yuan Wang, 2018. "Operational Water Withdrawal and Consumption Factors for Electricity Generation Technology in China—A Literature Review," Sustainability, MDPI, vol. 10(4), pages 1-15, April.
    4. Abulibdeh, A. & Jawarneh, R.N. & Al-Awadhi, T. & Abdullah, M.M. & Abulibdeh, R. & El Kenawy, A.M., 2024. "Assessment of carbon footprint in Qatar's electricity sector: A comparative analysis across various building typologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    5. Vuarnoz, Didier & Jusselme, Thomas, 2018. "Temporal variations in the primary energy use and greenhouse gas emissions of electricity provided by the Swiss grid," Energy, Elsevier, vol. 161(C), pages 573-582.
    6. Cui, Peizhe & Xu, Zaifeng & Yao, Dong & Qi, Huaqing & Zhu, Zhaoyou & Wang, Yinglong & Li, Xin & Liu, Zhiqiang & Yang, Sheng, 2022. "Life cycle water footprint and carbon footprint analysis of municipal sludge plasma gasification process," Energy, Elsevier, vol. 261(PB).
    7. Nuri Cihat Onat & Galal M. Abdella & Murat Kucukvar & Adeeb A. Kutty & Munera Al‐Nuaimi & Gürkan Kumbaroğlu & Melih Bulu, 2021. "How eco‐efficient are electric vehicles across Europe? A regionalized life cycle assessment‐based eco‐efficiency analysis," Sustainable Development, John Wiley & Sons, Ltd., vol. 29(5), pages 941-956, September.
    8. Murat Kucukvar & Khalel Ahmed Alawi & Galal M. Abdella & Muhammet Enis Bulak & Nuri C. Onat & Melih Bulu & Murat Yalçıntaş, 2021. "A frontier‐based managerial approach for relative sustainability performance assessment of the world's airports," Sustainable Development, John Wiley & Sons, Ltd., vol. 29(1), pages 89-107, January.
    9. Onat, Nuri Cihat & Kucukvar, Murat, 2020. "Carbon footprint of construction industry: A global review and supply chain analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 124(C).
    10. Cano-Rodríguez, Sara & Rubio-Varas, Mar & Sesma-Martín, Diego, 2022. "At the crossroad between green and thirsty: Carbon emissions and water consumption of Spanish thermoelectricity generation, 1969–2019," Ecological Economics, Elsevier, vol. 195(C).
    11. De Angelis, Paolo & Tuninetti, Marta & Bergamasco, Luca & Calianno, Luca & Asinari, Pietro & Laio, Francesco & Fasano, Matteo, 2021. "Data-driven appraisal of renewable energy potentials for sustainable freshwater production in Africa," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    12. Onat, Nuri Cihat & Kucukvar, Murat & Aboushaqrah, Nour N.M. & Jabbar, Rateb, 2019. "How sustainable is electric mobility? A comprehensive sustainability assessment approach for the case of Qatar," Applied Energy, Elsevier, vol. 250(C), pages 461-477.
    13. Meng, Fanxin & Liu, Gengyuan & Liang, Sai & Su, Meirong & Yang, Zhifeng, 2019. "Critical review of the energy-water-carbon nexus in cities," Energy, Elsevier, vol. 171(C), pages 1017-1032.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wu, X.D. & Chen, G.Q., 2017. "Energy and water nexus in power generation: The surprisingly high amount of industrial water use induced by solar power infrastructure in China," Applied Energy, Elsevier, vol. 195(C), pages 125-136.
    2. Liu, Yitong & Chen, Bin & Wei, Wendong & Shao, Ling & Li, Zhi & Jiang, Weizhong & Chen, Guoqian, 2020. "Global water use associated with energy supply, demand and international trade of China," Applied Energy, Elsevier, vol. 257(C).
    3. Nian, Victor, 2015. "Change impact analysis on the life cycle carbon emissions of energy systems – The nuclear example," Applied Energy, Elsevier, vol. 143(C), pages 437-450.
    4. Yu, Shiwei & Zhang, Junjie & Zheng, Shuhong & Sun, Han, 2015. "Provincial carbon intensity abatement potential estimation in China: A PSO–GA-optimized multi-factor environmental learning curve method," Energy Policy, Elsevier, vol. 77(C), pages 46-55.
    5. Gilbert, Alexander Q. & Sovacool, Benjamin K., 2017. "US liquefied natural gas (LNG) exports: Boom or bust for the global climate?," Energy, Elsevier, vol. 141(C), pages 1671-1680.
    6. Xue-Ting Jiang & Jie-Fang Dong & Xing-Min Wang & Rong-Rong Li, 2016. "The Multilevel Index Decomposition of Energy-Related Carbon Emission and Its Decoupling with Economic Growth in USA," Sustainability, MDPI, vol. 8(9), pages 1-16, August.
    7. Li, Bing-Bing & Liang, Qiao-Mei & Wang, Jin-Cheng, 2015. "A comparative study on prediction methods for China's medium- and long-term coal demand," Energy, Elsevier, vol. 93(P2), pages 1671-1683.
    8. Lei Liu & Ke Wang & Shanshan Wang & Ruiqin Zhang & Xiaoyan Tang, 2019. "Exploring the Driving Forces and Reduction Potential of Industrial Energy-Related CO 2 Emissions during 2001–2030: A Case Study for Henan Province, China," Sustainability, MDPI, vol. 11(4), pages 1-25, February.
    9. Jie-fang Dong & Qiang Wang & Chun Deng & Xing-min Wang & Xiao-lei Zhang, 2016. "How to Move China toward a Green-Energy Economy: From a Sector Perspective," Sustainability, MDPI, vol. 8(4), pages 1-18, April.
    10. Robert Baťa & Jan Fuka & Petra Lešáková & Jana Heckenbergerová, 2019. "CO 2 Efficiency Break Points for Processes Associated to Wood and Coal Transport and Heating," Energies, MDPI, vol. 12(20), pages 1-21, October.
    11. Meng, Fanxin & Liu, Gengyuan & Liang, Sai & Su, Meirong & Yang, Zhifeng, 2019. "Critical review of the energy-water-carbon nexus in cities," Energy, Elsevier, vol. 171(C), pages 1017-1032.
    12. Bayer, Peter & Rybach, Ladislaus & Blum, Philipp & Brauchler, Ralf, 2013. "Review on life cycle environmental effects of geothermal power generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 446-463.
    13. Lv, J. & Li, Y.P. & Shan, B.G. & Jin, S.W. & Suo, C., 2018. "Planning energy-water nexus system under multiple uncertainties – A case study of Hebei province," Applied Energy, Elsevier, vol. 229(C), pages 389-403.
    14. Orfanos, Neoptolemos & Mitzelos, Dimitris & Sagani, Angeliki & Dedoussis, Vassilis, 2019. "Life-cycle environmental performance assessment of electricity generation and transmission systems in Greece," Renewable Energy, Elsevier, vol. 139(C), pages 1447-1462.
    15. Zhi-Fu Mi & Yi-Ming Wei & Chen-Qi He & Hua-Nan Li & Xiao-Chen Yuan & Hua Liao, 2017. "Regional efforts to mitigate climate change in China: a multi-criteria assessment approach," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 22(1), pages 45-66, January.
    16. Wu, X.D. & Guo, J.L. & Chen, G.Q., 2018. "The striking amount of carbon emissions by the construction stage of coal-fired power generation system in China," Energy Policy, Elsevier, vol. 117(C), pages 358-369.
    17. Yuksel, Ibrahim, 2013. "Renewable energy status of electricity generation and future prospect hydropower in Turkey," Renewable Energy, Elsevier, vol. 50(C), pages 1037-1043.
    18. Shu-Hong Wang & Ma-Lin Song & Tao Yu, 2019. "Hidden Carbon Emissions, Industrial Clusters, and Structure Optimization in China," Computational Economics, Springer;Society for Computational Economics, vol. 54(4), pages 1319-1342, December.
    19. Toklu, E., 2013. "Overview of potential and utilization of renewable energy sources in Turkey," Renewable Energy, Elsevier, vol. 50(C), pages 456-463.
    20. Gholami, M. & Barbaresi, A. & Torreggiani, D. & Tassinari, P., 2020. "Upscaling of spatial energy planning, phases, methods, and techniques: A systematic review through meta-analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:139:y:2017:i:c:p:406-421. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.